BOINC.Italy BOINC.Italy BOINC.Italy La community italiana dedicata al calcolo distribuito
facebook feed twitter youtube
  • Utenti: 14'795
  • Gruppi: 56
  • Potenza: 377,40 TFLOPS
  • RAC: 75'479'620
  • Statistiche team
  • HomeHome
  • ArticoliArticoli
    • BOINC
    • Progetti
    • News dai progetti
    • BOINC.Italy
    • Calcolo distribuito
    • Scienza e ricerca
  • ProgettiProgetti
    • Progetti BOINC
      • Astronomia, Fisica e Chimica
        • Albert@home
        • Asteroids@home
        • Cosmology@home
        • Einstein@home
        • GAIA@Home
        • LHC
          • ATLAS@home
          • CMS
          • LHC@home
          • vLHC@home
          • Lhcb
        • MilkyWay@home
        • NanoHUB@Home
        • QuChemPedIA@Home
        • Universe@Home
      • Biologia e Medicina
        • Denis@home
        • DrugDiscovery@home
        • GPUGrid
        • RNA World
        • Rosetta@home
        • SiDock@Home
      • Climatologia e studio della Terra
        • Climateprediction.net
        • Quake-Catcher Network
        • Radioactive@home
      • Matematica
        • Amicable Numbers
        • Collatz Conjecture
        • Distribuited Hardware Evolution
        • Gerasim@home
        • iThena.Computational
        • iThena.Measurements
        • Moo! Wrapper
        • NFS@home
        • NumberFields@home
        • ODLK
        • ODLK1 (Latinsquares)
        • PrimeGrid
        • Private GFN Server
        • Rake Search
        • SRBase
        • Van Der Waerden Numbers
        • WEP-M+2
        • YAFU
      • Informatica e I.A.
        • LODA
      • Scienze cognitive
        • MindModeling@home
      • Multidisciplinari
        • BOINC@TACC
        • CSG@Home
          • DNA@home
          • SubsetSum@home
          • Wildlife@Home
        • Ibercivis
        • World Community Grid
        • yoyo@home
      • Altri
        • BOINC Alpha Test
        • Minecraft@Home
        • MLC@Home
        • WuProp@home
      • Progetti Italiani
        • Tn-Grid
      • Progetti chiusi
        • Leiden Classical
        • FightMalaria@home
        • The Lattice Project
        • Malaria Control
        • Superlink@Technion
        • Convector
        • Distributed DataMining
        • OProject@home
        • Sudoku@vtaiwan
        • FreeHAL@home
        • AlmereGrid BOINC GRID
        • BURP
        • Chess960@home
        • DistrRTgen
        • Pirates@home
        • Poem@home
        • POGS
        • Optima@home
        • SZTAKI Desktop Grid
        • Seti@home
        • Volpex@UH
        • Enigma@home
        • CAS@home
        • VGTU project@Home
        • SAT@home
        • PRIMABOINCA
        • XAnsons4cod
        • QMC@home
    • Folding@home
    • Progetti di distributed thinking
    • Applicazioni dei progetti
    • Foldit
    • Covid-19
    • Pubblicazioni scientifiche
    • Sorgenti Progetti
  • CommunityCommunity
    • Canale Facebook
    • Canale Twitter
    • Canale Telegram
    • Canale IRC su Freenode
    • Canale IRC su Libera Chat
    • Gruppi interni
    • Iniziative
    • Badge
    • Loghi e banner
    • Facciamoci conoscere
  • ForumForum
  • StatisticheStatistiche
    • Statistiche mondiali
    • Statistiche BOINC.Italy
    • Classifica combinata membri
    • Classifica combinata gruppi
    • BOINC.Italy Trophy
    • Stato dei server
    • Ricerca membri
    • Classifiche Challenges Esterni
  • SupportoSupporto
    • Ottieni aiuto online
    • Link utili
    • Domande frequenti (FAQ)
    • Guide
      • Guide (base)
        • Come funziona BOINC
        • Installazione di BOINC
        • Mini guida al BOINC Manager
        • Inserire Tag nel nick
      • Guide (avanzate)
        • Cross Project ID
        • La firma personalizzata BOINC
        • Multisessioni Boinc
        • Guida server Boinc
  • BlogBlog
    • Annunci
    • BOINC
    • BOINC.Italy
    • Calcolo distribuito
    • Pensieri distribuiti
    • Progetti
  • CercaCerca
 

Scienza e ricerca

HL-LHC sta arrivando

Empty
  •  Stampa 
  • Email
Dettagli
boboviz logo
Articoli
06 Marzo 2024
Creato: 06 Marzo 2024

Valutazione attuale: 5 / 5

Stella attivaStella attivaStella attivaStella attivaStella attiva

Amici di BoincItaly, ho tradotto, "semplificato" (in certe parti) e ampliato (in altre) un articolo sulla situazione del futuro HL-LHC.

Spero che la cosa non vi dispiaccia...

 

 

Con meno di due anni di attività dell'LHC prima dell'inizio della fase del terzo arresto prolungato della durata di 3 anni (LS3 – Gennaio 2026/Dicembre 2028), quando inizierà la fase di installazione principale dell'LHC ad alta luminosità, Oliver Brüning e Markus Zerlauth descrivono gli ultimi progressi e i prossimi passi per la validazione di tecnologie chiave, test di prototipi e produzione in serie di apparecchiature.

 (Alimentazione superconduttiva. Un criostato di test contenente l’RCBO, il conduttore elettrico "superconduttivo ad alta temperatura" che alimenta la tripletta del quadrupolo dell’HL-LHC attraverso cavi MgB2 collocati in un criostato flessibile, in attesa di essere inserito nella stringa IT per i test)

 

Questo programma scientifico unico – che ha visto la scoperta del bosone di Higgs, innumerevoli misurazioni di fenomeni ad alta energia e ricerche esaustive di nuove particelle – ha già trasformato il campo di ricerca. Per aumentarne ulteriormente il potenziale di scoperta, ad esempio consentendo una maggiore precisione e l'osservazione di processi rari, l'aggiornamento dell'LHC ad alta luminosità (HL-LHC) mira ad aumentare la quantità di dati raccolti dagli esperimenti ATLAS e CMS di un fattore pari a 10 e consentirà al “collisore di punta” del CERN di funzionare fino all'inizio degli anni '40.

Dopo il completamento del secondo arresto prolungato (LS2) nel 2022, durante il quale il progetto di aggiornamento degli iniettori LHC è stato implementato con successo, la Run 3 è iniziata con un'energia record del centro di massa di 13,6 TeV. Rimangono solo due anni di attività prima dell'avvio dell’LS3 nel 2026. Questo è il momento in cui inizierà la fase di installazione principale di HL-LHC, a partire dallo scavo dei nuclei verticali che collegheranno il tunnel di LHC alle nuove gallerie HL-LHC e seguito dall'installazione di nuovi componenti dell'acceleratore.

Approvato nel 2016, il progetto HL-LHC sta implementando diverse tecnologie innovative, tra cui: magneti acceleratori al Niobio-Stagno (Nb3Sn), un sistema di alimentazione costituito da cavi superconduttori “a caldo” MgB2 (Diboruro di magnesio) e un criostato flessibile, l'integrazione di cavità crab ("a granchio") al Niobio compatte (per compensare il maggiore angolo di incrocio del raggio) e una nuova tecnologia per la collimazione del raggio e la protezione della macchina.

Gli sforzi al CERN, e di tutta la collaborazione HL-LHC, si stanno ora concentrando sulla produzione in serie di tutti i risultati finali del progetto, in vista della loro installazione e validazione nel tunnel dell'LHC. Il fulcro di questo sforzo, che coinvolge istituti di tutto il mondo e una forte collaborazione con l’industria, è l’assemblaggio e la messa in servizio dei nuovi magneti che saranno installati su entrambi i lati di ATLAS e CMS per consentire operazioni ad alta luminosità a partire dal 2029. In parallelo continua il lavoro intenso sui corrispondenti aggiornamenti dei rivelatori di LHC: ATLAS e CMS installeranno tracciatori interni completamente nuovi durante LS3, mentre LHCb ed Alice stanno lavorando su delle proposte per dei rilevatori completamente nuovi per una eventuale installazione nel 2030.

 

Infrastrutture civili completate

Le prestazioni più elevate a cui si punta nei punti di interazione ATLAS e CMS richiedono una maggiore capacità di raffreddamento per i magneti quadrupolari di focalizzazione finale, a sinistra e a destra degli esperimenti, per poter gestire il flusso più ampio di detriti di collisione. È inoltre necessario spazio aggiuntivo per ospitare nuove apparecchiature: convertitori di potenza e dispositivi di protezione delle macchine, nonché schermature per ridurre la loro esposizione alle radiazioni e per consentire un facile accesso per interventi più rapidi e quindi una migliore disponibilità delle macchine.

Tutti questi requisiti sono stati affrontati con la costruzione di nuove strutture sotterranee presso gli esperimenti ATLAS e CMS. Entrambi i siti sono caratterizzati da un nuovo pozzo di accesso e da una caverna che ospiterà una nuova cella frigorifera, una galleria lunga circa 400 m per i nuovi convertitori di potenza e le apparecchiature di protezione, quattro tunnel di servizio e 12 nuclei verticali che collegano la galleria al tunnel LHC esistente. Una nuova scala su ciascun lato dell'esperimento collega inoltre le nuove strutture sotterranee al tunnel esistente per il personale dell'LHC.

Costruzioni ed infrastrutture. La nuova galleria al Punto1 (Atlas) per i convertitori di energia ed altre strumentazioni (prima foto). Foto al centro: il punto in superficie per il raffreddamento e la ventilazione al Punto5 (CMS). Caverna di servizio sotterranea, foto a destra.

 

I lavori di ingegneria civile sono iniziati alla fine del 2018, per consentire l'esecuzione, durante LS2, della maggior parte degli interventi che richiedevano macchinari pesanti, dal momento che si stimava che le vibrazioni avrebbero altrimenti avuto un impatto negativo sulle prestazioni di LHC. Tutte le opere di ingegneria civile sotterranee sono state completate nel 2022 e la costruzione dei nuovi edifici di superficie, cinque per ogni IP, nella primavera del 2023. I nuovi ascensori di accesso hanno subito un ritardo di circa sei mesi a causa di alcune scheggiature del calcestruzzo localizzate all'interno dei vani, ma l’installazione in entrambi i siti è stata completata nell’autunno 2023.

La realizzazione delle infrastrutture tecniche procede ormai a pieno ritmo sia in ambito sotterraneo che in superficie. Occorre sottolineare che, anche se i lavori di ingegneria civile si sono estesi per tutto il periodo di chiusura per il COVID-19 e sono stati esposti alla volatilità del mercato a seguito dell’invasione russa dell’Ucraina, siano stati sostanzialmente completati nei tempi previsti e nel rispetto del budget. Ciò rappresenta un'enorme risultato per il progetto HL-LHC e per il CERN.

Una delle pietre miliari dell'aggiornamento HL-LHC sono i nuovi magneti a triplo quadrupolo con maggiore tolleranza alle radiazioni. Un totale di 24 magneti quadrupolari Nb3Sn di grande apertura saranno installati attorno ad ATLAS e CMS per focalizzare i raggi più strettamente, rappresentando il primo utilizzo della tecnologia dei magneti Nb3Sn in un acceleratore per la fisica delle particelle.

A causa dei tassi di collisione più elevati negli esperimenti, i livelli e la quantità integrata di radiazioni emesse aumenteranno di conseguenza, richiedendo particolare attenzione nella scelta dei materiali utilizzati per costruire le bobine magnetiche (nonché l'integrazione di ulteriori schermature di tungsteno negli schermi del fascio). Per avere spazio sufficiente per la schermatura, le aperture della bobina devono essere all'incirca raddoppiate rispetto alle triplette Nb-Ti esistenti, riducendo così il parametro β* (che si riferisce alla dimensione del fascio nei punti di collisione) di un fattore di quattro rispetto al progetto nominale dell'LHC, sfruttando appieno le migliorate emittanze del fascio in seguito all'aggiornamento della catena degli iniettori dell'LHC.

 

Magneti quadrupoli. Il primo gruppo crio-magnete a tripletta interna prodotto dal CERN (Q2b), comprendente un prototipo di magnete MQXFB e un magnete correttore MCBXF, pronto per alimentare i test sul banco di prova SM18 (a sinistra) e (a destra) il magnete MQXFB03 nello SMI2.

 

Per l’HL-LHC raggiungere il gradiente magnetico integrato richiesto, con l’attuale tecnologia Nb-Ti, richiederebbe una tripletta molto più lunga. La scelta del Nb3Sn consente di raggiungere campi di 12 Tesla (e quindi di raddoppiare l'apertura di tripletta) pur mantenendo il magnete relativamente compatto (la lunghezza totale passa da 23 m a 32 m). L’intensa attività di ricerca e sviluppo e la prototipazione di magneti Nb3Sn sono iniziate oltre 20 anni fa nell’ambito del programma di ricerca sull’acceleratore LHC (LARP) con sede negli Stati Uniti, che ha unito LBNL (Lawrence Berkeley National Laboratory), SLAC (Stanford Linear Accelerator Center), Fermilab e BNL (Brookhaven National Laboratory). Lanciato ufficialmente come studio di progettazione nel 2011, è stato poi convertito nell'Accelerator Upgrade Program (AUP) nella fase di industrializzazione e produzione in serie di tutti i componenti principali.

I magneti della tripletta interna dell’HL-LHC sono stati progettati e costruiti in una collaborazione tra AUP e CERN. I 10 crio-assemblaggi Q1 e Q3 (otto per l'installazione e due di riserva), che contengono due magneti quadrupoli individuali di 4,2 m di lunghezza (MQXFA), saranno forniti da AUP (con conferimento in natura), mentre le 10 versioni più lunghe per Q2 (contenenti un singolo magnete quadrupolare lungo 7,2 m, MQXFB, e un gruppo correttore di orbita dipolo) saranno prodotte al CERN. Il primo di questi magneti è stato testato e completamente convalidato negli Stati Uniti nel 2019 e il primo crio-assemblaggio costituito da due singoli magneti è stato assemblato, testato e convalidato al Fermilab ad inizio 2023. Questo crio-assemblaggio è arrivato al CERN nel novembre 2023 ed è ora in fase di preparazione per la convalida e il test. La produzione statunitense di cavi e bobine è stata completata nel 2023 e la produzione di magneti e crio-assemblaggi sta accelerando per la produzione in serie.

I primi tre magneti prototipo Q2 hanno mostrato, inizialmente, alcune limitazioni. Ciò ha richiesto, dopo il test del secondo prototipo, un ampio piano di miglioramento in tre step per affrontare le diverse fasi della produzione della bobina, la procedura di assemblaggio della stessa, del guscio in acciaio inossidabile e la saldatura finale per la massa fredda. Tutte e tre gli step di miglioramento sono stati implementati nel terzo prototipo (MQXFBP3), che è il primo magnete che non presenta più alcuna limitazione, né alle temperature di esercizio di 1,9 K né a 4,5 K, e quindi il primo della produzione destinato all'installazione nel tunnel (vedi immagine “Magneti quadripoli” qui sopra).

 

Dipoli magnetici. Prototipo di un dipolo a singola apertura (D1) a destra e un dipolo a doppia apertura (D2) a sinistra, entrambi in prova all’ SM18.

Oltre alle triplette (di quadrupoli), le regioni di inserzione HL-LHC richiedono diversi altri nuovi magneti per manipolare i fasci. Per alcuni tipi di magneti, come i magneti correttori-non-lineari (prodotti dalla LASA di Milano come conferimento in natura dell'INFN), l'intera produzione è stata completata e tutti i magneti sono stati consegnati al CERN. I nuovi dipoli magnetici di separazione e ricombinazione – che si trovano sul lato opposto delle regioni di inserimento, per guidare i due fasci controrotanti su una traiettoria comune che consente collisioni negli IP – sono prodotti come conferimento in natura dal Giappone e dall'Italia.

I dipoli magnetici a singola apertura D1 sono prodotti da KEK con Hitachi come partner industriale, mentre i dipoli magnetici D2 (a doppia apertura) sono prodotti nell'industria da ASG di Genova, sempre come conferimento in natura da parte dell'INFN. Anche se entrambi i tipi di dipolo si basano sulla “vecchia” ma consolidata tecnologia dei superconduttori Nb-Ti (il cavallo di battaglia dell'LHC), spingono il conduttore in un territorio inesplorato. Ad esempio, il dipolo D1 presenta un'ampia apertura di 150 mm e un picco di dipolo di 5,6 T, che si traducono in forze molto grandi nelle bobine durante il funzionamento. Hitachi ha già prodotto tre delle sei serie di magneti. Il prototipo del magnete dipolo D1 è stato consegnato al CERN nel 2023 e raffreddato nella sua configurazione finale; il prototipo del magnete D2 è stato testato e completamente convalidato al CERN nella sua configurazione finale del criostato e il primo magnete della serie D2 è stato consegnato dall'ASG al CERN.

Anche la produzione dei rimanenti nuovi magneti HL-LHC è in pieno svolgimento: i magneti coseno-teta annidati – un nuovo design di magneti comprendente due solenoidi con strati di bobina inclinati,

 

necessari per correggere l’orbita accanto al dipolo D2, stanno procedendo bene in Cina (come contributo in natura da parte dell’IHEP) con Bama come produttore industriale. I magneti correttori di orbita a dipolo annidato, necessari per la correzione dell'orbita all'interno dell'area del tripletto, si basano sulla tecnologia Nb-Ti (un conferimento in natura del CIEMAT in Spagna) e stanno anch'essi facendo buoni progressi, con la convalida finale dimostrata nel 2023.

Con i nuovi convertitori di potenza nelle gallerie sotterranee HL-LHC posizionati a circa 100 m di distanza e 8 m sopra i magneti nel tunnel, era necessario trovare un modo efficiente (in termini di costi ed energia) per trasportare correnti fino a 18 kA tra di loro. Era stato valutato che i “semplici” cavi e le sbarre in rame raffreddati ad acqua avrebbero portato ad un’indesiderata inefficienza nel raffreddamento delle perdite ohmiche, e che i collegamenti Nb-Ti (che richiedono il raffreddamento con elio liquido) sarebbero stati troppo impegnativi a livello tecnico e molto costosi, data la differenza di altezza tra le nuove gallerie e il tunnel. Si è così deciso di sviluppare un nuovo sistema di alimentazione “a freddo” dotato di un criostato flessibile e cavi di diboruro di magnesio (MgB2) in grado di trasportare le correnti richieste a temperature fino a 50 gradi K (-223 gradi centigradi). (Attualmente occorrono cablaggi che lavorano intorno ai 3K /-269 gradi centigradi e si eviterebbe, in questa maniera, il fondamentale passaggio dai 4,5 ai 3 K, passaggio che comporta molte difficoltà e costi elevati. NdT).

 

Correttori magnetici. Un correttore all’interno del suo criostato (a sinistra) e la costruzione di un correttore a massa fredda (a destra)

Con questo sistema senza precedenti, l'elio evapora dai criostati magnetici nel tunnel e si propaga attraverso il criostato flessibile fino alle nuove gallerie sotterranee. Questo processo raffredda sia il cavo MgB2 che i conduttori di corrente “superconduttori ad alta temperatura” (che collegano i convertitori di potenza a conduzione normale ai magneti superconduttori) a temperature nominali comprese tra 15 K e 35 K. L'elio gassoso viene quindi raccolto nelle nuove gallerie, compresso, liquefatto e reimmesso nel sistema criogenico. I nuovi cavi e criostati sono stati sviluppati con aziende in Italia (ASG e Tratos) e nei Paesi Bassi (Cryoworld) e sono ora disponibili come materiali commerciali per altri progetti.

Tre test dimostrativi condotti presso la struttura SM18 del CERN hanno già convalidato completamente il cavo MgB2 e il concetto di criostato flessibile. Le scatole di alimentazione che collegano il cavo MgB2 ai convertitori di potenza nelle gallerie e ai magneti nel tunnel sono state sviluppate e prodotte come contributi in natura con l'Università di Southampton (e Puma come partner industriale nel Regno Unito) e l'Università di Uppsala (e RFR come partner industriale in Svezia). Un assemblaggio completo del collegamento superconduttore con le due scatole di alimentazione è stato assemblato ed è in fase di test alla sezione SM18 del CERN, in preparazione per la sua installazione nella stringa tripletta interna nel 2024 (vedere la prima immagine “Alimentazione superconduttiva”).

 

La stringa di test IT

La stringa "inner-triplet" (IT) – che replica l’intero magnete, l’alimentazione e la protezione a sinistra del CMS dai magneti tripletti fino al magnete dipolo di separazione D1 – è la prossima pietra miliare del progetto HL-LHC.

 

Schema logico della stringa IT di test completa. Gli elementi chiave che costituiscono le nuove regioni di inserimento per l'esperimento LHC ad alta luminosità, che mostrano i gruppi di quadrupolo (Q) e dipolo (D), il feedbox dei collegamenti superconduttori (DFHX e DFH), la linea di distribuzione criogenica (SQXL) e apparecchiature ausiliarie.

 

L'obiettivo della stringa IT è convalidare le procedure e gli strumenti di assemblaggio e connessione necessari per la messa in opera della struttura nell'HL-LHC. Serve anche a valutare il comportamento collettivo della catena magnetica superconduttiva in condizioni il più vicino possibile a quelle del loro successivo funzionamento nell'HL-LHC, e come opportunità di formazione per i teams delle apparecchiature per il loro successivo lavoro nel tunnel dell'LHC. Come detto, la stringa IT comprende tutti i sistemi necessari per il funzionamento alle condizioni nominali, come il vuoto (seppur senza schermi a fascio magnetico), la criogenia, i sistemi di alimentazione e protezione. L'intera catena IT – lunga circa 90 m – trova posto sul retro della sala test SM18, dove è disponibile la necessaria infrastruttura per l'elio liquido.

Le nuove gallerie sotterranee sono “imitate” da una struttura metallica situata sopra i magneti. La struttura ospita i convertitori di potenza e il sistema di protezione dal quench (fascio che viene perso), il quadro di sezionamento elettrico e la scatola di alimentazione che unisce il collegamento superconduttore ai sistemi di alimentazione a conduzione normale. Il collegamento superconduttore si estende dalla struttura metallica sopra il gruppo magnete all'estremità D1 della stringa IT dove (dopo una discesa verticale che imita il passaggio attraverso i nuclei verticali sotterranei) è connesso a un prototipo della scatola di alimentazione dei magneti.

È in fase di completamento l'installazione dei sistemi di alimentazione normale e di protezione delle macchine della stringa IT (vedi immagine sotto). Insieme alle infrastrutture già completate dell'impianto, l'intero sistema di alimentazione a conduzione normale della stringa è entrato nella sua prima fase di messa in servizio nel Dicembre 2023, con l'esecuzione delle prove di cortocircuito. La linea di distribuzione criogenica per la stringa IT è stata testata con successo a basse temperature e sarà presto sottoposta a un secondo raffreddamento alla temperatura nominale, prima dell'installazione dei magneti e del sistema di alimentazione a freddo. Si prevede che l'installazione di test sarà completata nel corso del 2024 e il periodo operativo principale avrà luogo nel 2025.

 

Collimatori

Il controllo delle perdite del fascio causate da particelle ad alta energia che deviano dalla loro traiettoria ideale è essenziale per garantire la protezione e il funzionamento efficiente dei componenti dell'acceleratore, e in particolare degli elementi superconduttori come i magneti e le cavità. L’attuale sistema di collimazione LHC, che comprende già più di 100 collimatori individuali installati attorno all’anello, deve essere aggiornato per affrontare le sfide senza precedenti poste dai fasci più luminosi dell’HL-LHC. Dopo un primo aggiornamento dei sistemi di collimazione e schermatura dell'LHC implementati durante LS2, la sfida della produzione di nuovi collimatori per la regione di inserimento e del secondo lotto di collimatori a bassa impedenza viene ora lanciata all'industria.

La stringa IT in assemblaggio all’SM18 (a sinistra) e l’installazione dell’infrastruttura elettrica e di segnale (a destra)

L’ LS2, e il successivo stop tecnico di fine anno, hanno visto anche il completamento del nuovo schema di collimazione dei cristalli. Situato nell’ “IR7” (tra CMS e LHCb), questo schema comprende quattro goniometri con cristalli piegati – uno per fascio e piano – per incanalare le particelle alone su un assorbitore a valle (immagine qui sotto).

Dopo studi approfonditi con i fasci negli ultimi anni, la collimazione dei cristalli è stata utilizzata operativamente in un test fisico per la prima volta durante il test sugli ioni pesanti del 2023, dove è stato dimostrato che aumenta l'efficienza di pulizia di un fattore fino a cinque rispetto allo schema di collimazione standard.

Installazione dei nuovi collimatori dei cristalli nel tunnel LHC al Punto7

A seguito di questo notevole successo di implementazione e dei test completi di sviluppo della macchina, gli obiettivi prestazionali di HL-LHC sono stati definitivamente confermati sia per le operazioni con protoni che con ioni. Ciò ha consentito di escludere dal progetto HL-LHC la soluzione di base che utilizzava un collimatore standard inserito nella sezione IR7 (che avrebbe costretto alla sostituzione, per creare lo spazio necessario, di un dipolo LHC standard da 8,3 T con due dipoli corti Nb3Sn da 11 T).

 

Le cavità "granchio"

Una seconda pietra angolare del progetto HL-LHC sono le cavità “granchio” superconduttrici a radiofrequenza. Posizionati accanto al dipolo D2 e al magnete quadrupolare a sezione corrispondente Q4 nelle regioni di inserimento, queste cavità sono necessarie per compensare l'effetto dannoso dell'angolo di incrocio sulla luminosità applicando “un calcio di momento trasversale” (ovvero una semi-rotazione del pacchetto del fascio NdT) a ciascun fascio che entra nelle regioni di interazione di ATLAS e CMS.

Schema logico di funzionamento della crab cavity, che "raddrizza" i pacchetti per migliorare l'impatto degli stessi nel punto di collisione

Verranno installati due diversi tipi di cavità: il dipolo a radiofrequenza (RFD) e il dipolo a doppio quarto d'onda (DQW), che deviano i grappoli rispettivamente nei piani di incrocio orizzontale e verticale (vedi immagine sopra). La produzione in serie delle cavità RFD sta per iniziare presso Zanon, in Italia, sotto la guida di AUP, mentre la produzione della serie di cavità DQW è ben avviata presso RI in Germania, sotto la guida del CERN, dopo la validazione riuscita di due cavità nude in pre-serie.

Un crio-modulo DQW completamente assemblato è stato sottoposto a dei test del fascio di grande successo nel Super Sincrotrone Protonico (SPS) dal 2018, dimostrando la formazione di fasci di protoni e consentendo lo sviluppo e la validazione dei necessari sistemi RF di basso livello e di protezione delle macchine. Per l'RFD, alla fine del 2021, sono state consegnate alla collaborazione del Regno Unito due cavità, dopo la loro corretta qualificazione al CERN.

Cavità a granchio. L’inserimento di un controllo del fascio in una cavità granchio (a sinistra) e l’arrivo all’SM18 di un crio-modulo RFD (a destra)

Queste sono state assemblate in un primo crio-modulo RFD completo, che è stato restituito al CERN nell'autunno 2023 ed è attualmente sottoposto a test di validazione a 1,9 K, rivelando alcune non conformità da risolvere prima che sia pronto per l'installazione nell'SPS nel 2025 per i test con fasci. Dopo la validazione dei prototipi, è stata avviata anche la produzione in serie dei necessari accessori e degli accoppiatori di modalità di ordine superiore per entrambi i tipi di cavità al CERN e all'AUP. Prima della fabbricazione, il concetto della cavità “granchio” è stato sottoposto a un lungo periodo di ricerca e sviluppo con il supporto di LARP, JLAB, UK-STFC e KEK.

 

Programmi futuri.

Il 2023 e il 2024 sono gli ultimi due anni di grande spesa e di assegnazione dei contratti industriali per il progetto HL-LHC. Con il completamento dei contratti di ingegneria civile e l'assegnazione dei contratti per i nuovi compressori criogenici e per i sistemi di distribuzione, il progetto ha ora impegnato oltre il 75% del suo budget previsto. Una revisione dei costi e della pianificazione di HL-LHC tenutasi al CERN nel Novembre 2023, condotta da un gruppo internazionale di esperti di acceleratori di altri laboratori, si è congratulata con il progetto per i buoni progressi complessivi e ha concordato con la proiezione di essere pronti per l'installazione delle principali attrezzature durante LS3 a partire dal 2026.

Discuti questo articolo
Accedi per commentare
Discuti questo articolo nel forum (5 risposte).

Informatica e IA

Empty
  •  Stampa 
  • Email
Dettagli
boboviz logo
Articoli
10 Marzo 2023
Creato: 10 Marzo 2023
Stella inattivaStella inattivaStella inattivaStella inattivaStella inattiva

Informatica e IA

(Informatics and AI)

 

 

MLC

MLC

 

Clemens J. - "MLDS: A Dataset for Weight-Space Analysis of Neural Networks". Arxiv 2021. Link

Clemens J. - "MLC@Home: A Distributed Platform for Studying and Understanding Neural Networks". Boinc Workshop 2021. Link

 

Discuti questo articolo
Accedi per commentare

Lo strumento "BluePrint"

Empty
  •  Stampa 
  • Email
Dettagli
boboviz logo
Articoli
10 Luglio 2017
Creato: 21 Giugno 2017

Valutazione attuale: 5 / 5

Stella attivaStella attivaStella attivaStella attivaStella attiva

Il tool Blueprint
Questo articolo introduce un nuovo tool per Foldit: il pannello Blueprint visualizza la sequenza di aminoacidi e la struttura secondaria della vostra proteina. Per impostazione predefinita, ogni lettera della sequenza è colorata in base alle torsioni φ e ψ (angoli diedri) in quella posizione nella struttura, seguendo lo stesso schema di colorazione ABEGO utilizzato dalla mappa di Rama (Rama Map). Al di sopra della sequenza, uno schema di struttura secondaria riflette l'assegnazione di fogli e eliche ad ogni posizione. Il pulsante “Auto Struttura” rileverà i fogli e le eliche e creerà le appropriate assegnazioni della struttura secondaria.
Il pannello Blueprint è accompagnato dal pannello “Costruisci i blocchi” (BuildingBlocks). I blocchi di costruzione rappresentano schemi discreti della struttura centrale delle proteine, che possono essere applicati alla vostra struttura proteica. I blocchi di costruzione forniti qui corrispondono a congiunzioni specifiche che sono frequentemente osservate nelle proteine naturali (erano precedentemente note come "Congiunzioni Ideali" nella mappa di Rama). Tutti i blocchi di costruzione sono destinati a collegare direttamente elementi di una struttura secondaria, con un foglio o una elica da entrambi i lati: l’uso appropriato di un blocco di costruzione dipende da questo contesto secondario. Ad esempio, un blocco di costruzione elica-foglietto avrebbe una buona connessione tra una elica alla posizione 20 e un foglio nella posizione 23, ma non funzionerebbe bene se le posizioni tra spirale e foglio fossero invertite.



Basta cliccare e trascinare un blocco di costruzione nel pannello Blueprint per applicare il blocco di costruzione alla struttura: I blocchi di costruzione applicati rimarranno delineati nel pannello Blueprint. I blocchi costruttivi applicati continueranno a esercitare vincoli di torsione ovunque siano posizionati: questi vincoli si comportano come “elastici” per torsioni φ e ψ e cercheranno di mantenere i residui vicino alla forma originale del blocco di costruzione, ogni volta che si utilizza il tool “Wiggle”.
E’ sufficiente cliccare e trascinare un blocco di costruzione fuori dal pannello Blueprint per rimuovere il blocco di costruzione: questo rimuoverà anche i vincoli torsionali associati. E’ consigliabile lasciare i blocchi di costruzione e i vincoli torsionali mentre si continua a ripiegare la proteina. Il pannello “Costruzione blocco” contiene due blocchi di costruzione speciali accanto al menu contestuale: un blocco è tutta-elica ed un altro è tutto-foglietto. Questi speciali blocchi di costruzione possono essere collocati sul pannello Blueprint per formare residui in eliche ideali e fogli ideali (non esercitano vincoli torsionali e scompaiono immediatamente dopo l'applicazione).
Il pannello Blueprint sarà abilitato in puzzle di progettazione specifici: sarà accessibile dal menù “Azione” nell’interfaccia originale o dal menù principale nella Selezione Interfaccia.

Maggiori informazioni sul tool Blueprint


Questa sezione è stata aggiunta per rispondere ad una domanda di un giocatore:
È stato sottolineato che la rimozione dei vincoli dello strumento Blueprint verso la fine consente di migliorare notevolmente il punteggio. Stando così le cose, perché sembra “controintuitivo”? – gitwut

Prima di rispondere a questa domanda, vorremmo fare un piccolo approfondimento sul “dietro le quinte” dello strumento Blueprint.
Antefatto:
Ci sono due motivazioni dietro lo strumento Blueprint: il primo è, semplicemente, quello di rendere le "congiunzioni ideali" più accessibili ai giocatori. Il filtro “Congiunzioni Ideali” ha aiutato enormemente la progettazione di Foldit, e i recenti disegni top-score hanno tutti congiunzioni eccellenti. Tuttavia, sembrava che i giocatori avessero bisogno di fare molto lavoro per soddisfare quel filtro. Speriamo che lo strumento Blueprint abbia reso più facile (soprattutto per i principianti) soddisfare il filtro “Congiunzioni Ideali”.
La seconda motivazione per lo sviluppo dello strumento Blueprint è stato quello di fornire un processo di progettazione alternativo: alcuni di noi (amministratori) sospettano che cattive dorsali di Foldit siano il risultato di un ciclo aggressivo nelle strategie di gioco medio o tardo. Ad esempio, si supponga di progettare una proteina e si decida di formare congiunzioni alla fine: dal momento in cui crei le congiunzioni, puoi già “cementare” le tue eliche e i tuoi foglietti ed ottimizzare l’assemblaggio principale della tua proteina e, di conseguenza, la dorsale non avrà molta flessibilità per ricostruire le congiunzioni. I punti terminali di due fasce beta confinanti possono essere posizionati in modo tale che non ci sia una congiunzione stabile per collegarli: utilizzare in maniera “aggressiva”, il tool Rebuild/Remix, per forzare una unione tra punti terminali incompatibili è simile a martellare un piolo quadrato in un foro rotondo. Sarà impossibile chiudere  la congiunzione senza compromettere la geometria della dorsale. Avevamo sperato che lo strumento Blueprint potesse essere utilizzato all'inizio del processo di progettazione (per costruire rapidamente una bozza "sana" di un disegno), la quale progettazione potrebbe essere gradualmente ottimizzata senza compromettere la geometria della dorsale.

I vincoli di torsione nel “Costruisci i blocchi”.
Per rispondere alla domanda di Gitwut, i blocchi costruttivi includono i vincoli di torsione: questi vincoli forzano un residuo in una certa regione della mappa di Ramachandran —come gli elastici (che rappresentano i vincoli di distanza) forza due residui ad essere ad una certa distanza l’uno dall’altro. Quando i vincoli sono presenti, lo “scuotimento” non produrrà punti in maniera rapida, ma la soluzione cercherà di seguire i vincoli. In linea di massima, i vincoli permettono di reindirizzare lo scuotimento verso il risultato desiderato sacrificando, di solito, i guadagni a breve termine per trovare, in ultima analisi, un modello migliore.
Posizionare una congiunzione “BuildingBlock” sul pannello Blueprint introduce vincoli di torsione nei residui della stessa (altrettanto, la rimozione del BuildingBlock rimuove i vincoli): i vincoli di torsione sono destinati a preservare la congiunzione mentre un giocatore sviluppa il resto del suo disegno. I vincoli sono necessari in questo caso perché la funzione di energia Foldit non necessariamente favorisce questo tipo di congiunzioni (non capiamo ancora appieno, infatti, perché le congiunzioni di BuildingBlock siano così prevalenti nelle proteine naturali). Queste possono essere favorite per ragioni che non sono esplicitamente modellate nella cinetica di ripiegamento di Foldit o siano dovute ad effetti entropici più complessi (al contrario, le eliche e i foglietti sono naturalmente stabilizzati dalle forze del legame di idrogeno, che sono catturate dalla funzione di energia Foldit). Senza i vincoli di torsione, “scuotimento” è incline a cancellare la congiunzione BuildingBlock a favore di guadagni energetici più piccoli. Abbiamo inteso che i giocatori potessero mantenere i vincoli per preservare le congiunzioni BuildingBlock fino a quando un progetto in corso non si fosse risolto in una maturazione piuttosto avanzata, eliminando poi i vincoli per il perfezionamento del finale gioco.



Per rendere le cose ancora più complicate, osserviamo che abbiamo regolato manualmente come vengono applicati i BuildingBlocks tramite il pannello Blueprint: quando si trascina un BuildingBlock sul pannello Blueprint e lo scheletro della proteina si mette “in posizione”, questa forma iniziale "aggiustata" è solo una approssimazione della forma ottimale della congiunzione. Quando questa si attiva, i vincoli di torsione trascinano la dorsale nella sua forma ottimale, che può essere leggermente diversa dalla forma iniziale regolata (questo è particolarmente evidente per i blocchi β-fermaglio). Ciò è dovuto al fatto che le congiunzioni BuildingBlock sono derivate da proteine naturali, che non dispongono mai di eliche e foglietti perfettamente ideali. Se si dovessero applicare le congiunzioni ottimali di BuildingBlock ai fasci beta ideali di Foldit, i filamenti beta ideali non sarebbero allineati per formare legami di idrogeno (figura A, sopra). Per rendere il tool più user-friendly, abbiamo aggiustato i BuildingBlock ottimali in modo che le congiunzioni-fermagli siano compatibili con i foglietti ideali di Foldit. Quindi, una forcella di BuildingBlock inizialmente blocca due filamenti perfetti in un allineamento perfetto (Figura B); il successivo Wiggling permetterà che i fili beta si flettano leggermente, in modo che il loop BuildingBlock possa rilassarsi nella sua forma ottimale (Figura C).
Tra parentesi, alcuni astuti giocatori di Foldit hanno notato che la collezione BuildingBlocks manca di una β-forcella BAAB, che è un loop stabile spesso trovato in natura: questo loop induce una deformazione significativa dei filamenti beta adiacenti. Per quanto noi progettisti di Foldit abbiamo provato, non siamo riusciti a regolare il BuildingBlock BAAB, in modo che fosse ragionevolmente compatibile con i foglietti beta ideali di Foldit, e quindi quel particolare loop è stato omesso dalla collezione BuildingBlocks.

C’è un “percorso” per il ripiegamento naturale? – Bruno Kestemont
Questa è una eccellente domanda, ma sfortunatamente non esiste una risposta semplice. Il percorso di piegatura, talvolta discusso come "cinetica del ripiegamento", descrive come una proteina denaturata (struttura lineare) transita nella sua piega nativa (struttura tridimensionale) nel corso del tempo. In generale, i percorsi di ripiegamento sono poco compresi, ma questa è un’area di intensa ricerca (infatti, il nostro David Baker ha cominciato a studiare la cinetica delle proteine negli anni 90!). La maggior parte di noi che lavora con Foldit o Rosetta non pensa molto ai percorsi di ripiegamento (come ha detto un collega, "A chi interessa?"): sosteniamo fortemente l'ipotesi che una catena di aminoacidi avrà naturalmente la sua struttura energetica più bassa (vedi il dogma di Anfinsen) e non ci preoccupiamo troppo del percorso necessario per arrivarci. In altre parole, siamo più interessati a come un sistema proteico si comporti in equilibrio; come il sistema raggiunga esattamente l’equilibrio è un’altra questione.
Teoricamente:
La maggior parte delle persone concorda sul fatto che le interazioni forti, locali (ad esempio i legami idrogeno a corto raggio che stabilizzano le alfa-eliche) si formeranno e che, invece, le interazioni deboli, non locali si formeranno più lentamente (esempio, l’abbinamento di filamenti beta tra residui distanti).
Sperimentalmente:
Molte piccole proteine sembrano piegarsi attraverso un meccanismo concertato, a due stati: si potrebbe immaginare che una proteina sia tradotta completamente dal ribosoma e che esista, per breve tempo, come una “bobina casuale” in soluzione prima di piegarsi tutta in una volta in una piega stabile. Noi osserviamo tali proteine in soli due stati: completamente dispiegate o completamente ripiegate. Questo è lo scenario più probabile per i tipi di piccole proteine (<150 residui) che si incontrano nei puzzle di Foldit.
Le proteine più grandi sembrano seguire vie più complesse, con percorsi multi-stato. In alcuni casi, possiamo osservare popolazioni multiple di proteine che esistono in vari, discreti stati di “pieghevolezza”. Molte di queste proteine si piegano anche in co-traslazione nella cellula, in modo che il N-terminale della proteina possa essere completamente piegato prima che il ribosoma finisca traducendo il C-terminale.

Discuti questo articolo
Accedi per commentare

Cristallografia a raggi X

Empty
  •  Stampa 
  • Email
Dettagli
boboviz logo
Articoli
13 Luglio 2017
Creato: 13 Luglio 2017

Valutazione attuale: 5 / 5

Stella attivaStella attivaStella attivaStella attivaStella attiva

Fin dal nostro ultimo post, abbiamo condotto un esperimento di diffrazione a raggi-X con uno dei nostri cristalli proteici. Siamo stati fortunati che i cristalli di proteine hanno prodotto dati di diffrazione di alta qualità e che, da questi dati, siamo riusciti a risolvere la prima struttura in cristallo di una proteina progettata dai giocatori di Foldit: una corrispondenza quasi esatta alla struttura progettata! Di seguito spieghiamo un po' di più sulla diffrazione a raggi X, mentre in un post successivo esamineremo più dettagliatamente la struttura finale.
Per prima cosa, il cristallo proteico viene raccolto dalla goccia usando un piccolo anello di nylon, di circa 0,3 mm di diametro. I cristalli di proteine sono spesso molto fragili, per cui “prendere al lazo” il cristallo richiede una mano costante (come, per esempio, nel dosaggio ottimale del caffè). Anche nell’asola, il cristallo è ancora immerso nella soluzione acquosa, con la tensione superficiale che contribuisce a mantenere il cristallo nell’asola. L’asola viene rapidamente sommersa in azoto liquido, ad una temperatura di circa -200 ° C, che spegne la maggior parte del movimento termico delle molecole nel cristallo.



Una volta congelato, il nostro cristallo è montato su un braccio robotico che posiziona il ciclo nel percorso a raggi X. Durante l'esposizione ai raggi X, il cristallo viene mantenuto sotto un flusso costante di azoto liquido per limitare l'aumento della temperatura nel cristallo: i raggi X hanno un'elevata energia e solo così, con il freddo, un cristallo di proteine può sopportare così tanta esposizione ai raggi prima di cominciare a degradarsi. Il reticolo della proteina potrebbe disintegrarsi a causa dell'aumento del movimento termico delle singole molecole proteiche, oppure i raggi X potrebbero innescare reazioni chimiche all'interno della proteina, distorcendo la sua struttura.
I raggi X sono, semplicemente, un tipo di radiazione elettromagnetica con una lunghezza d'onda molto breve - in questo caso circa un angstrom. In un esperimento di diffrazione a raggi X, è importante che tutte le radiazioni abbiano esattamente la stessa lunghezza d'onda e si concentrino in un fascio molto stretto. Con il nostro cristallo montato nel percorso del fascio a raggi X, un rivelatore di raggi X è posizionato dietro il cristallo e misura i raggi incidenti dopo questi hanno colpito il cristallo e sono diffratti dagli elettroni delle molecole proteiche. A causa della disposizione regolare degli atomi nel cristallo proteico, i raggi X diffratti subiscono interferenze “costruttive” in particolari direzioni: questo si verifica quando due "fette" equivalenti del cristallo sono orientate per coincidere con la lunghezza d'onda dei raggi X. Ovunque si verifichi un'interferenza costruttiva, il rilevatore registra un segnale particolarmente intenso, mostrato come punto scuro sull'immagine qui sotto; presi insieme questi punti comprendono un modello di diffrazione.


Questo sopra è un modello di diffrazione di raggi X di un cristallo proteico. Nell’inserto a destra, possiamo vedere che alcuni punti sembrano avere dei duplicati che sono leggermente deviati: questo indica che ci sono attualmente due cristalli identici nel percorso del raggio, orientati in maniera leggermente diversa. Molto probabilmente, il cristallo si è “fratturato” in due durante il congelamento (fortunatamente il software di elaborazione delle immagini che utilizziamo è abbastanza sofisticato da correggere questo problema).
La distanza e la posizione dei punti è governata dalla dimensione e dalla forma della “cellula unitaria” del cristallo, l’unità ripetuta che costituisce il cristallo. L'intensità di ogni punto è determinata dalla distribuzione degli elettroni all'interno della cellula unitaria (cioè le posizioni degli atomi nella proteina). Ogni atomo della cellula unitaria contribuisce ad ogni punto nello schema di diffrazione. Se si potesse cambiare la densità degli elettroni intorno ad un solo atomo della proteina cristallizzata, questo cambierebbe l'intensità di ogni punto nel modello di diffrazione!
Si noti che le macchie più lontane dal centro del rivelatore tendono ad essere meno intense: i punti più lontani contengono dati di maggior risoluzione circa la densità elettronica della proteina. Se aggiustiamo il contrasto di questa immagine, si possono individuare macchie vicino al bordo del rivelatore: questa proteina diffrange i raggi X ad una risoluzione limite di 1,2 amstrong! In una mappa di densità di elettroni derivata da questi modelli di diffrazione, dobbiamo essere in grado di distinguere le posizioni di singoli atomi.


Se il cristallo viene ruotato rispetto al fascio a raggi X, si osserverà un altro modello di diffrazione, poiché un nuovo orientamento produce interferenze costruttive in direzioni diverse. Di solito misuriamo un nuovo modello di diffrazione a intervalli di rotazione di 0,5 gradi, eventualmente ruotando il cristallo per un totale di 180 gradi (a volte meno per cristalli altamente simmetrici) al fine di raccogliere un set di dati completo. Questo set di dati è stato raccolto con un rivelatore all'avanguardia che può misurare i singoli fotoni; la raccolta di un set di dati completo non richiede più di qualche minuto. Nei "primi giorni" della cristallografia delle proteine (gli anni 60), per raccogliere un set di dati completo poteva richiedere un intero giorno!
La lavorazione e l'interpretazione di questi modelli di diffrazione dei raggi X è una procedura complessa e molto tecnica, e non lo approfondiremo qui. Ma sia sufficiente dire che i dati di diffrazione dei raggi X hanno rivelato una struttura cristallina piena e ad alta risoluzione di questa proteina progettata dai giocatori di Foldit!


Congratulazioni a Waya, Galaxie, e Susume che hanno contribuito alla soluzione del Puzzle 1297! Tutti i giocatori dovrebbero controllare Puzzle 1384 per esplorare la raffinata mappa di densità elettronica da questi dati e vedere se è possibile ripiegare la sequenza proteica nella sua struttura di cristallo! Faremo seguire, poi, un confronto più dettagliato del modello progettato e della struttura cristallina finale.

Discuti questo articolo
Accedi per commentare

Lo strumento "Remix"

Empty
  •  Stampa 
  • Email
Dettagli
boboviz logo
Articoli
10 Luglio 2017
Creato: 21 Giugno 2017
Stella inattivaStella inattivaStella inattivaStella inattivaStella inattiva

Rimescolare e inserire Frammenti
Inserimento frammenti
Un Frammento è un modello per un pezzo della dorsale proteica e può essere di qualsiasi dimensione. Un frammento di dimensione 3 sarà una forma per 3 residui, uno di 9 per 9 residui.  Quando si inserisce un frammento, si copia la forma di quel frammento in un pezzo della dorsale: pensatelo come ad un copia/incolla di un pezzo sulla dorsale. Qui sotto si possono vedere 3 diversi frammenti (in turchese) che sono stati copiati dallo strumento Remix sulla dorsale.




La collezione di frammenti che si copiano/incollano viene chiamata libreria di frammenti: vorremmo che la nostra libreria di frammenti fosse riempita con i migliori frammenti possibili - frammenti di cui noi siamo fiduciosi sono buone forme che daranno alle nostre pieghe le maggiori probabilità di successo.
Quindi, da dove viene la nostra libreria? Spesso il miglior approccio al ripiegamento proteico (o a qualsiasi altra cosa, in realtà) è prendere qualcosa che funziona e riutilizzarlo.  Abbiamo migliaia di proteine dalla natura, di cui conosciamo la forma e siamo certi che queste forme funzionano perché ne abbiamo le prove fisiche. Osservando queste forme note, possiamo cercare frammenti comuni in molte di queste proteine naturali: prendiamo questi frammenti e ci costruiamo la nostra libreria. Poi, quando qualcuno ha bisogno di una forma per una sezione di dorsale, guardiamo nella nostra libreria e troviamo frammenti che possiamo copiare/incollare nella nostra proteina. Lo strumenti che fa questa ricerca e il copia/incolla si chiama “raccoglitore di frammenti” (fragment picker).

Il "raccoglitore di frammenti" di Foldit
Lo strumento Ricostruire (Rebuild) è stato il primo ed originale raccoglitore di frammenti, prendendoli da una libreria di frammenti di dimensione 3: quando si utilizza lo strumento su un pezzo della dorsale, lui sceglie un sotto-pezzo della dimensione 3 all’interno della selezione, controlla un frammento e lo copia/incolla nella proteina.
Ci sono, però, due problemi con questo strumento. Il primo è che, avendo solo frammenti di dimensione 3, se si vogliono frammenti più grandi bisogna combinare tra di loro vari frammenti piccoli, cosa che, scientificamente, è meno valida. Il secondo (e più grande) problema è che lo strumento Ricostruire non è molto preciso su quali forme scegliere: è sufficiente chiedere frammenti di dimensione 3 e lo strumento li fornisce*. Poi lo strumento è costretto a fare molto lavoro dietro le scene per cercare di rendere inseribili i frammenti nella sezione stabilita.
Qui si possono vedere i frammenti reali che Rebuild sta cercando di inserire (nessun “dietro le quinte” sta lavorando per renderlo adatto) mettendo un punto di taglio ad un'estremità della selezione e disattivando le forze del punto di taglio. Si guardi al risultato qui sotto:



Come si può vedere, questi frammenti non si adattano molto bene. La banda blu rappresenta il divario tra dov’è l’endpoint e dove dovrebbe essere in realtà. L'unico modo per renderli "in forma" richiede di distruggere il frammento originale nel processo.  Lo strumento Remix cerca di risolvere entrambi questi problemi. In primo luogo la biblioteca di frammenti ha frammenti di dimensioni da 3 a 9. Secondo, e più importante, quando si chiede un frammento con Remix, lui cerca un frammento che si inserisca in maniera naturale tra le estremità della selezione.
Ecco alcuni risultati di Remix senza nessuna modifica dopo l’inserimento:



Tutti questi frammenti sono adatti: la fascia gialla mostra che il punto di taglio è già abbastanza vicino da poter essere chiuso. In realtà, abbiamo ancora "corretto" i frammenti di Remix, ma ora hanno solo bisogno di un piccolo aggiustamento, quindi il frammento è lasciato praticamente intatto.
Questo significa che il tool è molto migliore nel lasciare i giocatori con frammenti scientificamente validi.
*Il Rebuild prende la sequenza della dorsale e della struttura secondaria quando si effettua una ricerca, ma non sono disponibili informazioni sulla conformazione.

Usare il nuovo Remix - Mescolare attraverso l’interfaccia grafica
Per usare il Remix su un pezzo di dorsale, selezionare il pezzo e cliccare il bottone Remix (o, nell’interfaccia originale, click con il pulsante destro e poi cliccare sul bottone Remix – apparirà il popup dell’interfaccia Remix).




Si osservi l’interfaccia qui sopra. Innanzitutto ci sono le frecce destra e sinistra: queste permettono di passare attraverso i vari frammenti che Remix ha trovato per questa selezione. E’ possibile vedere quale frammento si sta osservando nella casella di testo sotto i pulsanti. Il primo frammento è sempre quello con cui si parte prima di usare lo strumento Remix e non cambierà nulla della struttura.
Il pulsante di stop serve per accettare il frammento attualmente visualizzato. È inoltre possibile utilizzare il pulsante di arresto nell'angolo superiore sinistro dello schermo e avrà lo stesso effetto.
Accanto al testo che mostra quale frammento si è selezionato, è possibile vedere un punteggio: questo punteggio permette di farsi una idea del punteggio dei frammenti senza dover chiudere lo strumento e scuotere la selezione. Occorre ricordare che questa è solo una stima approssimativa, ed è utile per un confronto relativo dei risultati: il punteggio finale, probabilmente, sarà diverso da quello visualizzato qui.
Infine abbiamo il pulsante “Più”: questo darà l’accesso alla funzionalità di salvataggio. Quando premuto, comparirà questo messaggio.

Dopo aver salvato, si può premere il bottone per tornare al frammento: premendo il pulsante “Più” per un ulteriore frammento, darà la possibilità di un salvataggio veloce nello slot, sovrascrivendo quello esistente. E’ possibile anche premere il pulsante “Stop”(che ha sostituito il “Più”) per cancellare il salvataggio veloce.

Quando si hanno tutti i frammenti desiderati, premere “Stop” e questi frammenti saranno disponibili nello slot per il salvataggio veloce. Cliccare Ctrl-1 e Ctrl-8 per avere accesso.


Rimescolamento via Script
Lo strumento può essere usato anche via scripts. Ecco un breve tutorial di come usarlo:
Per avviare la funzione, usare il comando

structure.RemixSelected(start_quicksave, num_results)

Quando si esegue questa funzione, verrà rimescolata la vostra selezione e posizionata fino al num_results dei diversi risultati nello slot di salvataggio veloce, cominciando uno slot start_quicksave: questo restituirà il numero di risultati che erano stati inseriti (dei volontari ci hanno fatto notare che li avrebbero voluti visibili).
Un esempio:

print(structure.RemixSelected(5, 3))

Se ci sono 3 o più risultati, stamperà “3” e collocherà il risultato negli slot di salvataggio veloce 5,6 e 7. Se ci sono due risultati disponibili, stamperà “2” e il risultato sarà solo negli slot 5 e 6.

Consigli generali
La raccolta di frammenti è utilizzata nel miglior modo per individuare i loop della proteina. Le forme del loop variano molto di più rispetto ad altre strutture secondarie, e quindi trovare un buon loop è più difficile e l'utilizzo di frammenti effettivi da proteine reali diventa più importante.
In generale è meglio usare frammenti più grandi, dal momento che questo offre un pezzo di buona dorsale migliore in una maniera che molti più piccoli rimescolamenti non riescono. Non si faccia troppo affidamento nel punteggio stimato mostrato nell'interfaccia utente Remix: le differenze di meno di 100 punti non sono molto significative.
Nel caso in cui lo strumento non trovi nulla, provare a selezionare un residuo in più o uno in meno in entrambi i lati della selezione: spesso questa mossa sarà sufficiente per dare una migliore gamma di risultati. E’ abbastanza facile farlo nella Interfaccia Selezione, ma richiede che siano riassegnati alcune strutture secondarie nell’Interfaccia Originale.
Alla fine, dopo aver inserito un frammento, ogni cambiamento alla sezione allontanerà dal frammento: è meglio trovare un frammento che richiede modifiche minime al progetto finale.


Discuti questo articolo
Accedi per commentare

Altri articoli...

  1. Foglietti e Botti
  2. Il fitro del "Ponte Idrogeno"
  3. Drug Design - Parte III
  4. Drug Design - Parte II
Pagina 1 di 8
  • Inizio
  • Indietro
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • Avanti
  • Fine

Ultime news dai progetti

  • Boinc per Android 7.18.1
  • CERN contro il Covid
  • Le novità in Rosetta
  • Folding@Home e le criptovalute
  • Nuovo account Twitter
  • Aggiornamento situazione CSG
  • Boinc Client 7.12
  • Nuovo applicativo Beta Sixtrack

Articoli

  • Docker e LHC
  • Traguardo delle 1.000 pubblicazioni scientifiche, che futuro per BOINC?
  • HL-LHC sta arrivando
  • Informatica e IA
  • LODA

Approfondimenti

  • Come funziona BOINC
  • Guida installazione BOINC
  • Utilizzo e settaggio del BOINC Manager
  • La firma personalizzata
  • CPID: cos'è e come funziona?

Iniziative

  • Utenti del giorno
  • Raccolta video

Blog

  • Pubblicazioni e....truffe
  • Teoria delle Stringhe - scienza o....
  • Mia mamma usa Windows
  • Foldit e AlphaFold
  • Addio Lugano bella
  • Supporta
  • Donazioni
  • Staff
  • Privacy
  • Contatti

Powered by BOINC

Il contenuto del portale BOINC.Italy è distribuito sotto Licenza Creative Commons
Copyleft © 2007 - 2025 BOINC.Italy