BOINC.Italy BOINC.Italy BOINC.Italy La community italiana dedicata al calcolo distribuito
facebook feed twitter youtube
  • Utenti: 14'795
  • Gruppi: 56
  • Potenza: 377,40 TFLOPS
  • RAC: 75'479'620
  • Statistiche team
  • HomeHome
  • ArticoliArticoli
    • BOINC
    • Progetti
    • News dai progetti
    • BOINC.Italy
    • Calcolo distribuito
    • Scienza e ricerca
  • ProgettiProgetti
    • Progetti BOINC
      • Astronomia, Fisica e Chimica
        • Albert@home
        • Asteroids@home
        • Cosmology@home
        • Einstein@home
        • GAIA@Home
        • LHC
          • ATLAS@home
          • CMS
          • LHC@home
          • vLHC@home
          • Lhcb
        • MilkyWay@home
        • NanoHUB@Home
        • QuChemPedIA@Home
        • Universe@Home
      • Biologia e Medicina
        • Denis@home
        • DrugDiscovery@home
        • GPUGrid
        • RNA World
        • Rosetta@home
        • SiDock@Home
      • Climatologia e studio della Terra
        • Climateprediction.net
        • Quake-Catcher Network
        • Radioactive@home
      • Matematica
        • Amicable Numbers
        • Collatz Conjecture
        • Distribuited Hardware Evolution
        • Gerasim@home
        • iThena.Computational
        • iThena.Measurements
        • Moo! Wrapper
        • NFS@home
        • NumberFields@home
        • ODLK
        • ODLK1 (Latinsquares)
        • PrimeGrid
        • Private GFN Server
        • Rake Search
        • SRBase
        • Van Der Waerden Numbers
        • WEP-M+2
        • YAFU
      • Informatica e I.A.
        • LODA
      • Scienze cognitive
        • MindModeling@home
      • Multidisciplinari
        • BOINC@TACC
        • CSG@Home
          • DNA@home
          • SubsetSum@home
          • Wildlife@Home
        • Ibercivis
        • World Community Grid
        • yoyo@home
      • Altri
        • BOINC Alpha Test
        • Minecraft@Home
        • MLC@Home
        • WuProp@home
      • Progetti Italiani
        • Tn-Grid
      • Progetti chiusi
        • Leiden Classical
        • FightMalaria@home
        • The Lattice Project
        • Malaria Control
        • Superlink@Technion
        • Convector
        • Distributed DataMining
        • OProject@home
        • Sudoku@vtaiwan
        • FreeHAL@home
        • AlmereGrid BOINC GRID
        • BURP
        • Chess960@home
        • DistrRTgen
        • Pirates@home
        • Poem@home
        • POGS
        • Optima@home
        • SZTAKI Desktop Grid
        • Seti@home
        • Volpex@UH
        • Enigma@home
        • CAS@home
        • VGTU project@Home
        • SAT@home
        • PRIMABOINCA
        • XAnsons4cod
        • QMC@home
    • Folding@home
    • Progetti di distributed thinking
    • Applicazioni dei progetti
    • Foldit
    • Covid-19
    • Pubblicazioni scientifiche
    • Sorgenti Progetti
  • CommunityCommunity
    • Canale Facebook
    • Canale Twitter
    • Canale Telegram
    • Canale IRC su Freenode
    • Canale IRC su Libera Chat
    • Gruppi interni
    • Iniziative
    • Badge
    • Loghi e banner
    • Facciamoci conoscere
  • ForumForum
  • StatisticheStatistiche
    • Statistiche mondiali
    • Statistiche BOINC.Italy
    • Classifica combinata membri
    • Classifica combinata gruppi
    • BOINC.Italy Trophy
    • Stato dei server
    • Ricerca membri
    • Classifiche Challenges Esterni
  • SupportoSupporto
    • Ottieni aiuto online
    • Link utili
    • Domande frequenti (FAQ)
    • Guide
      • Guide (base)
        • Come funziona BOINC
        • Installazione di BOINC
        • Mini guida al BOINC Manager
        • Inserire Tag nel nick
      • Guide (avanzate)
        • Cross Project ID
        • La firma personalizzata BOINC
        • Multisessioni Boinc
        • Guida server Boinc
  • BlogBlog
    • Annunci
    • BOINC
    • BOINC.Italy
    • Calcolo distribuito
    • Pensieri distribuiti
    • Progetti
  • CercaCerca
 

Articoli

Docker e LHC

Empty
  •  Stampa 
  • Email
Dettagli
boboviz logo
Articoli
29 Marzo 2025
Creato: 29 Marzo 2025
Stella inattivaStella inattivaStella inattivaStella inattivaStella inattiva

Docker e LHC

 

Questa è una brevissima guida su come far girare le prime app Docker nel progetto Lhc-dev per l'applicativo Theory.

Come prima cosa è necessario installare WSL sotto Windows (se non sapete come fare, potete usare la nostra guida), e comunque è semplicissimo e lo riportiamo qui. Il comando, da lanciare in PowerShell, è

WSL --install

Una volta installato WSL, occorre installare una distro linux (noi consigliamo Ubuntu) dallo Store di Windows

 

Una volta installato, si avvierà la shell di Linux e occorrerà create un utente ed una password.

 

A questo punto occorre installare il pacchetto podman nella distro. Per prima cosa occorre aggiornare la distro con il comando

sudo apt-get update

e, poi

sudo apt-get podman

 

A questo punto la distro è pronta e potete chiudere il terminale.

Per funzionare, però, occorre (per ora) usare la versione beta del Boinc Manager (la 8.10) e la potete scaricare qui. Una volta scaricato il file zip, chiudere il Boinc Manager (ricordandosi di fermare le elaborazioni in corso), scompattare il file compresso in una cartella e copiare i files boinc.exe e boinccmd.exe (magari rinominate quelli presenti) nella cartella C\Program Files\Boinc. A questo punto avviate nuovamente il Boinc Manager e controllate che i log siano simili a questo (notare che viene riconosciuta la presenza sia di WSL con Ubuntu che di Docker)

Starting BOINC client version 8.1.0 for windows_x86_64
This a development version of BOINC and may not function properly
log flags: file_xfer, sched_ops, task
Libraries: libcurl/8.12.1-DEV Schannel zlib/1.3.1
Windows processor group 0: 12 processors
OS: Microsoft Windows 11: Professional x64 Edition, (10.00.26100.00)
Usable WSL distros:
- Ubuntu (WSL 2) (default)
- OS: Ubuntu (Ubuntu 24.04.2 LTS)
- libc version: 2.39
- Docker version 4.9.3 (podman)

 

A questo punto, nel proprio profilo utente sul sito e selezionare l'applicativo Theory nella lista delle app disponibili.

Attraverso l'applicativo WSL Manager (installato quanto è stato lanciato il comando di installazione) è possibile configurare le cpu, la ram, la rete e tutto ciò che può essere utile a personalizzare il calcolo.


Buono scaccolo!!

 

Discuti questo articolo
Accedi per commentare
Discuti questo articolo nel forum (1 risposte).

Traguardo delle 1.000 pubblicazioni scientifiche, che futuro per BOINC?

Empty
  •  Stampa 
  • Email
Dettagli
Antonio Cerrato logo
Articoli
10 Gennaio 2025
Creato: 10 Gennaio 2025

Valutazione attuale: 5 / 5

Stella attivaStella attivaStella attivaStella attivaStella attiva


Andiamo a vedere l’andamento della produzione scientifica.

Possiamo iniziare il 2025 con un bel traguardo di BOINC. Infatti la piattaforma per il calcolo distribuito ha superato le 1000 pubblicazioni scientifiche ottenute grazie alla collaborazione tra ricercatori e volontari (https://boinc.berkeley.edu/pubs.php). Sono ben 1018 gli articoli scientifici ottenuti dal 1997 ad oggi secondo la lista ufficiale di BOINC, ma come si è arrivati alla compilazione di questa lista?

Nel 2022 la lista ufficiale contava circa 420 pubblicazioni scientifiche. Altre liste, come quella di BOINC.Italy, segnalavano un numero maggiore se non quasi il doppio. L’aggiornamento della lista è stato uno dei temi del BOINC Workshop del 2023. Gli elenchi delle varie community (quella di BOINC.Italy è la più completa) hanno dato un importante contributo all’aggiornamento della lista ufficiale. Dal 2023, quindi, la lista viene aggiornata periodicamente da Alex Piskun e dà un risultato immediato del lavoro svolto dai ricercatori e dai volontari.

1018 non sarà il numero definitivo per i risultati ottenuti fino al 2024, infatti bisognerà conteggiare nei prossimi mesi le pubblicazioni del 2024 ancora in peer review e le pubblicazioni non ancora inserite nell’elenco degli ultimi 3 o 4 anni. Quest’ultimo gap è dovuto a una comunicazione tardiva, se non del tutto assente, delle pubblicazioni scientifiche sui siti di alcuni progetti BOINC. Se per esempio Einstein@Home ha una sezione dedicata e aggiornata delle pubblicazioni scientifiche ottenute tramite il progetto (https://einsteinathome.org/it-it/science/publications), ciò non è purtroppo lo standard per tutti i progetti. Quindi spesso si devono utilizzare motori di ricerca come Google Scholar per rintracciare le pubblicazioni scientifiche ottenute tramite BOINC (sempre se l’articolo scientifico cita esplicitamente BOINC e/o il lavoro svolto dai volontari). Insomma, spesso è come cercare un ago in un pagliaio.

Volendo fare un un punto della situazione, possiamo analizzare l’andamento del numero di pubblicazioni scientifiche. Possiamo assimilare BOINC a un progetto di “Big Science”, ovvero a quelle infrastrutture di ricerca, spesso uniche, come il CERN, lo SKA o la Stazione Spaziale Internazionale. Quando vengono valutati questi progetti, viene analizzato anche il numero di pubblicazioni scientifiche che sono attese. Nei primi anni il numero è molto basso, poi si inizia la vera e propria produzione scientifica a pieno regime che raggiunge un picco dopo di che vi è la fase di dismissione dell’infrastruttura con un calo delle pubblicazioni scientifiche. I motivi di dismissione possono essere molteplici: obiettivi scientifici raggiunti, infrastruttura fisica obsoleta, improvvisa mancanza di risorse, disinteresse generale ecc.. Vi possono essere anche delle estensioni, basta pensare alla Stazione Spaziale Internazionale che non può essere sostituita immediatamente dal Lunar Gateway o a un upgrade programmato dell’infrastruttura fisica come nel caso del CERN le cui attività vengono sospese ogni tot anni per effettuare manutenzioni e installazioni straordinarie per evitarne l’obsolescenza.
Detto ciò possiamo esaminare l’andamento delle pubblicazioni scientifiche di BOINC.


Grafico pubblicazioni scientifiche progetti BOINC


Come possiamo vedere dal grafico, tra il 1997 e il 2003 non c’è stato una grossa produzione scientifica, ma dal 2004, con l’entrata a pieno regime della produzione scientifica dei primi progetti, è iniziata la fase centrale di produzione di articoli. Dopo di che abbiamo avuto un picco della produzione (2009-2010) per poi avere una prima, apparente, fase di diminuzione degli articoli scientifici. La fase di “dismissione” probabilmente è stata rallentata dall’ingresso su BOINC di nuovi progetti e/o sotto-progetti o da un interesse maggiore dei ricercatori nell’investire tempo e risorse sui progetti BOINC già esistenti (queste sono delle ipotesi, il periodo 2010-2015 andrebbe analizzato in modo più approfondito).
Nel 2015 si raggiunge un altro picco seguito da una fase di decrescita della produzione scientifica. Dal 2022 abbiamo nuovamente una crescita della produzione scientifica. Le domande ora sono: il picco della terza ondata di pubblicazioni scientifiche è vicino o lontano? Quando ci si avvierà alla fase di dismissione di BOINC? Tra 5 o 15 anni? Difficile dare delle risposte, probabilmente i ricercatori perderanno interesse per BOINC quando potranno “acquistare calcolo ad elevate prestazioni” a bassissimo costo.

Una cosa è certa, le infrastrutture di ricerca nascono, vivono e muoiono (sostituite da altre infrastrutture), il destino di BOINC seguirà quello del radiotelescopio di Arecibo e dei rover Spirit e Opportunity. Speriamo solo di poter estendere, per quanto possibile, “la vita” di BOINC, ma se osserviamo la storia di BOINC possiamo essere tutti orgogliosi delle 1018 pubblicazioni scientifiche ottenute fino ad oggi e probabilmente senza BOINC non esisterebbero. Insomma abbiamo aiutato la scienza a progredire anche nei momenti più difficili dell’umanità.

Discuti questo articolo
Accedi per commentare
Discuti questo articolo nel forum (1 risposte).

Informatica e IA

Empty
  •  Stampa 
  • Email
Dettagli
boboviz logo
Articoli
10 Marzo 2023
Creato: 10 Marzo 2023
Stella inattivaStella inattivaStella inattivaStella inattivaStella inattiva

Informatica e IA

(Informatics and AI)

 

 

MLC

MLC

 

Clemens J. - "MLDS: A Dataset for Weight-Space Analysis of Neural Networks". Arxiv 2021. Link

Clemens J. - "MLC@Home: A Distributed Platform for Studying and Understanding Neural Networks". Boinc Workshop 2021. Link

 

Discuti questo articolo
Accedi per commentare

HL-LHC sta arrivando

Empty
  •  Stampa 
  • Email
Dettagli
boboviz logo
Articoli
06 Marzo 2024
Creato: 06 Marzo 2024

Valutazione attuale: 5 / 5

Stella attivaStella attivaStella attivaStella attivaStella attiva

Amici di BoincItaly, ho tradotto, "semplificato" (in certe parti) e ampliato (in altre) un articolo sulla situazione del futuro HL-LHC.

Spero che la cosa non vi dispiaccia...

 

 

Con meno di due anni di attività dell'LHC prima dell'inizio della fase del terzo arresto prolungato della durata di 3 anni (LS3 – Gennaio 2026/Dicembre 2028), quando inizierà la fase di installazione principale dell'LHC ad alta luminosità, Oliver Brüning e Markus Zerlauth descrivono gli ultimi progressi e i prossimi passi per la validazione di tecnologie chiave, test di prototipi e produzione in serie di apparecchiature.

 (Alimentazione superconduttiva. Un criostato di test contenente l’RCBO, il conduttore elettrico "superconduttivo ad alta temperatura" che alimenta la tripletta del quadrupolo dell’HL-LHC attraverso cavi MgB2 collocati in un criostato flessibile, in attesa di essere inserito nella stringa IT per i test)

 

Questo programma scientifico unico – che ha visto la scoperta del bosone di Higgs, innumerevoli misurazioni di fenomeni ad alta energia e ricerche esaustive di nuove particelle – ha già trasformato il campo di ricerca. Per aumentarne ulteriormente il potenziale di scoperta, ad esempio consentendo una maggiore precisione e l'osservazione di processi rari, l'aggiornamento dell'LHC ad alta luminosità (HL-LHC) mira ad aumentare la quantità di dati raccolti dagli esperimenti ATLAS e CMS di un fattore pari a 10 e consentirà al “collisore di punta” del CERN di funzionare fino all'inizio degli anni '40.

Dopo il completamento del secondo arresto prolungato (LS2) nel 2022, durante il quale il progetto di aggiornamento degli iniettori LHC è stato implementato con successo, la Run 3 è iniziata con un'energia record del centro di massa di 13,6 TeV. Rimangono solo due anni di attività prima dell'avvio dell’LS3 nel 2026. Questo è il momento in cui inizierà la fase di installazione principale di HL-LHC, a partire dallo scavo dei nuclei verticali che collegheranno il tunnel di LHC alle nuove gallerie HL-LHC e seguito dall'installazione di nuovi componenti dell'acceleratore.

Approvato nel 2016, il progetto HL-LHC sta implementando diverse tecnologie innovative, tra cui: magneti acceleratori al Niobio-Stagno (Nb3Sn), un sistema di alimentazione costituito da cavi superconduttori “a caldo” MgB2 (Diboruro di magnesio) e un criostato flessibile, l'integrazione di cavità crab ("a granchio") al Niobio compatte (per compensare il maggiore angolo di incrocio del raggio) e una nuova tecnologia per la collimazione del raggio e la protezione della macchina.

Gli sforzi al CERN, e di tutta la collaborazione HL-LHC, si stanno ora concentrando sulla produzione in serie di tutti i risultati finali del progetto, in vista della loro installazione e validazione nel tunnel dell'LHC. Il fulcro di questo sforzo, che coinvolge istituti di tutto il mondo e una forte collaborazione con l’industria, è l’assemblaggio e la messa in servizio dei nuovi magneti che saranno installati su entrambi i lati di ATLAS e CMS per consentire operazioni ad alta luminosità a partire dal 2029. In parallelo continua il lavoro intenso sui corrispondenti aggiornamenti dei rivelatori di LHC: ATLAS e CMS installeranno tracciatori interni completamente nuovi durante LS3, mentre LHCb ed Alice stanno lavorando su delle proposte per dei rilevatori completamente nuovi per una eventuale installazione nel 2030.

 

Infrastrutture civili completate

Le prestazioni più elevate a cui si punta nei punti di interazione ATLAS e CMS richiedono una maggiore capacità di raffreddamento per i magneti quadrupolari di focalizzazione finale, a sinistra e a destra degli esperimenti, per poter gestire il flusso più ampio di detriti di collisione. È inoltre necessario spazio aggiuntivo per ospitare nuove apparecchiature: convertitori di potenza e dispositivi di protezione delle macchine, nonché schermature per ridurre la loro esposizione alle radiazioni e per consentire un facile accesso per interventi più rapidi e quindi una migliore disponibilità delle macchine.

Tutti questi requisiti sono stati affrontati con la costruzione di nuove strutture sotterranee presso gli esperimenti ATLAS e CMS. Entrambi i siti sono caratterizzati da un nuovo pozzo di accesso e da una caverna che ospiterà una nuova cella frigorifera, una galleria lunga circa 400 m per i nuovi convertitori di potenza e le apparecchiature di protezione, quattro tunnel di servizio e 12 nuclei verticali che collegano la galleria al tunnel LHC esistente. Una nuova scala su ciascun lato dell'esperimento collega inoltre le nuove strutture sotterranee al tunnel esistente per il personale dell'LHC.

Costruzioni ed infrastrutture. La nuova galleria al Punto1 (Atlas) per i convertitori di energia ed altre strumentazioni (prima foto). Foto al centro: il punto in superficie per il raffreddamento e la ventilazione al Punto5 (CMS). Caverna di servizio sotterranea, foto a destra.

 

I lavori di ingegneria civile sono iniziati alla fine del 2018, per consentire l'esecuzione, durante LS2, della maggior parte degli interventi che richiedevano macchinari pesanti, dal momento che si stimava che le vibrazioni avrebbero altrimenti avuto un impatto negativo sulle prestazioni di LHC. Tutte le opere di ingegneria civile sotterranee sono state completate nel 2022 e la costruzione dei nuovi edifici di superficie, cinque per ogni IP, nella primavera del 2023. I nuovi ascensori di accesso hanno subito un ritardo di circa sei mesi a causa di alcune scheggiature del calcestruzzo localizzate all'interno dei vani, ma l’installazione in entrambi i siti è stata completata nell’autunno 2023.

La realizzazione delle infrastrutture tecniche procede ormai a pieno ritmo sia in ambito sotterraneo che in superficie. Occorre sottolineare che, anche se i lavori di ingegneria civile si sono estesi per tutto il periodo di chiusura per il COVID-19 e sono stati esposti alla volatilità del mercato a seguito dell’invasione russa dell’Ucraina, siano stati sostanzialmente completati nei tempi previsti e nel rispetto del budget. Ciò rappresenta un'enorme risultato per il progetto HL-LHC e per il CERN.

Una delle pietre miliari dell'aggiornamento HL-LHC sono i nuovi magneti a triplo quadrupolo con maggiore tolleranza alle radiazioni. Un totale di 24 magneti quadrupolari Nb3Sn di grande apertura saranno installati attorno ad ATLAS e CMS per focalizzare i raggi più strettamente, rappresentando il primo utilizzo della tecnologia dei magneti Nb3Sn in un acceleratore per la fisica delle particelle.

A causa dei tassi di collisione più elevati negli esperimenti, i livelli e la quantità integrata di radiazioni emesse aumenteranno di conseguenza, richiedendo particolare attenzione nella scelta dei materiali utilizzati per costruire le bobine magnetiche (nonché l'integrazione di ulteriori schermature di tungsteno negli schermi del fascio). Per avere spazio sufficiente per la schermatura, le aperture della bobina devono essere all'incirca raddoppiate rispetto alle triplette Nb-Ti esistenti, riducendo così il parametro β* (che si riferisce alla dimensione del fascio nei punti di collisione) di un fattore di quattro rispetto al progetto nominale dell'LHC, sfruttando appieno le migliorate emittanze del fascio in seguito all'aggiornamento della catena degli iniettori dell'LHC.

 

Magneti quadrupoli. Il primo gruppo crio-magnete a tripletta interna prodotto dal CERN (Q2b), comprendente un prototipo di magnete MQXFB e un magnete correttore MCBXF, pronto per alimentare i test sul banco di prova SM18 (a sinistra) e (a destra) il magnete MQXFB03 nello SMI2.

 

Per l’HL-LHC raggiungere il gradiente magnetico integrato richiesto, con l’attuale tecnologia Nb-Ti, richiederebbe una tripletta molto più lunga. La scelta del Nb3Sn consente di raggiungere campi di 12 Tesla (e quindi di raddoppiare l'apertura di tripletta) pur mantenendo il magnete relativamente compatto (la lunghezza totale passa da 23 m a 32 m). L’intensa attività di ricerca e sviluppo e la prototipazione di magneti Nb3Sn sono iniziate oltre 20 anni fa nell’ambito del programma di ricerca sull’acceleratore LHC (LARP) con sede negli Stati Uniti, che ha unito LBNL (Lawrence Berkeley National Laboratory), SLAC (Stanford Linear Accelerator Center), Fermilab e BNL (Brookhaven National Laboratory). Lanciato ufficialmente come studio di progettazione nel 2011, è stato poi convertito nell'Accelerator Upgrade Program (AUP) nella fase di industrializzazione e produzione in serie di tutti i componenti principali.

I magneti della tripletta interna dell’HL-LHC sono stati progettati e costruiti in una collaborazione tra AUP e CERN. I 10 crio-assemblaggi Q1 e Q3 (otto per l'installazione e due di riserva), che contengono due magneti quadrupoli individuali di 4,2 m di lunghezza (MQXFA), saranno forniti da AUP (con conferimento in natura), mentre le 10 versioni più lunghe per Q2 (contenenti un singolo magnete quadrupolare lungo 7,2 m, MQXFB, e un gruppo correttore di orbita dipolo) saranno prodotte al CERN. Il primo di questi magneti è stato testato e completamente convalidato negli Stati Uniti nel 2019 e il primo crio-assemblaggio costituito da due singoli magneti è stato assemblato, testato e convalidato al Fermilab ad inizio 2023. Questo crio-assemblaggio è arrivato al CERN nel novembre 2023 ed è ora in fase di preparazione per la convalida e il test. La produzione statunitense di cavi e bobine è stata completata nel 2023 e la produzione di magneti e crio-assemblaggi sta accelerando per la produzione in serie.

I primi tre magneti prototipo Q2 hanno mostrato, inizialmente, alcune limitazioni. Ciò ha richiesto, dopo il test del secondo prototipo, un ampio piano di miglioramento in tre step per affrontare le diverse fasi della produzione della bobina, la procedura di assemblaggio della stessa, del guscio in acciaio inossidabile e la saldatura finale per la massa fredda. Tutte e tre gli step di miglioramento sono stati implementati nel terzo prototipo (MQXFBP3), che è il primo magnete che non presenta più alcuna limitazione, né alle temperature di esercizio di 1,9 K né a 4,5 K, e quindi il primo della produzione destinato all'installazione nel tunnel (vedi immagine “Magneti quadripoli” qui sopra).

 

Dipoli magnetici. Prototipo di un dipolo a singola apertura (D1) a destra e un dipolo a doppia apertura (D2) a sinistra, entrambi in prova all’ SM18.

Oltre alle triplette (di quadrupoli), le regioni di inserzione HL-LHC richiedono diversi altri nuovi magneti per manipolare i fasci. Per alcuni tipi di magneti, come i magneti correttori-non-lineari (prodotti dalla LASA di Milano come conferimento in natura dell'INFN), l'intera produzione è stata completata e tutti i magneti sono stati consegnati al CERN. I nuovi dipoli magnetici di separazione e ricombinazione – che si trovano sul lato opposto delle regioni di inserimento, per guidare i due fasci controrotanti su una traiettoria comune che consente collisioni negli IP – sono prodotti come conferimento in natura dal Giappone e dall'Italia.

I dipoli magnetici a singola apertura D1 sono prodotti da KEK con Hitachi come partner industriale, mentre i dipoli magnetici D2 (a doppia apertura) sono prodotti nell'industria da ASG di Genova, sempre come conferimento in natura da parte dell'INFN. Anche se entrambi i tipi di dipolo si basano sulla “vecchia” ma consolidata tecnologia dei superconduttori Nb-Ti (il cavallo di battaglia dell'LHC), spingono il conduttore in un territorio inesplorato. Ad esempio, il dipolo D1 presenta un'ampia apertura di 150 mm e un picco di dipolo di 5,6 T, che si traducono in forze molto grandi nelle bobine durante il funzionamento. Hitachi ha già prodotto tre delle sei serie di magneti. Il prototipo del magnete dipolo D1 è stato consegnato al CERN nel 2023 e raffreddato nella sua configurazione finale; il prototipo del magnete D2 è stato testato e completamente convalidato al CERN nella sua configurazione finale del criostato e il primo magnete della serie D2 è stato consegnato dall'ASG al CERN.

Anche la produzione dei rimanenti nuovi magneti HL-LHC è in pieno svolgimento: i magneti coseno-teta annidati – un nuovo design di magneti comprendente due solenoidi con strati di bobina inclinati,

 

necessari per correggere l’orbita accanto al dipolo D2, stanno procedendo bene in Cina (come contributo in natura da parte dell’IHEP) con Bama come produttore industriale. I magneti correttori di orbita a dipolo annidato, necessari per la correzione dell'orbita all'interno dell'area del tripletto, si basano sulla tecnologia Nb-Ti (un conferimento in natura del CIEMAT in Spagna) e stanno anch'essi facendo buoni progressi, con la convalida finale dimostrata nel 2023.

Con i nuovi convertitori di potenza nelle gallerie sotterranee HL-LHC posizionati a circa 100 m di distanza e 8 m sopra i magneti nel tunnel, era necessario trovare un modo efficiente (in termini di costi ed energia) per trasportare correnti fino a 18 kA tra di loro. Era stato valutato che i “semplici” cavi e le sbarre in rame raffreddati ad acqua avrebbero portato ad un’indesiderata inefficienza nel raffreddamento delle perdite ohmiche, e che i collegamenti Nb-Ti (che richiedono il raffreddamento con elio liquido) sarebbero stati troppo impegnativi a livello tecnico e molto costosi, data la differenza di altezza tra le nuove gallerie e il tunnel. Si è così deciso di sviluppare un nuovo sistema di alimentazione “a freddo” dotato di un criostato flessibile e cavi di diboruro di magnesio (MgB2) in grado di trasportare le correnti richieste a temperature fino a 50 gradi K (-223 gradi centigradi). (Attualmente occorrono cablaggi che lavorano intorno ai 3K /-269 gradi centigradi e si eviterebbe, in questa maniera, il fondamentale passaggio dai 4,5 ai 3 K, passaggio che comporta molte difficoltà e costi elevati. NdT).

 

Correttori magnetici. Un correttore all’interno del suo criostato (a sinistra) e la costruzione di un correttore a massa fredda (a destra)

Con questo sistema senza precedenti, l'elio evapora dai criostati magnetici nel tunnel e si propaga attraverso il criostato flessibile fino alle nuove gallerie sotterranee. Questo processo raffredda sia il cavo MgB2 che i conduttori di corrente “superconduttori ad alta temperatura” (che collegano i convertitori di potenza a conduzione normale ai magneti superconduttori) a temperature nominali comprese tra 15 K e 35 K. L'elio gassoso viene quindi raccolto nelle nuove gallerie, compresso, liquefatto e reimmesso nel sistema criogenico. I nuovi cavi e criostati sono stati sviluppati con aziende in Italia (ASG e Tratos) e nei Paesi Bassi (Cryoworld) e sono ora disponibili come materiali commerciali per altri progetti.

Tre test dimostrativi condotti presso la struttura SM18 del CERN hanno già convalidato completamente il cavo MgB2 e il concetto di criostato flessibile. Le scatole di alimentazione che collegano il cavo MgB2 ai convertitori di potenza nelle gallerie e ai magneti nel tunnel sono state sviluppate e prodotte come contributi in natura con l'Università di Southampton (e Puma come partner industriale nel Regno Unito) e l'Università di Uppsala (e RFR come partner industriale in Svezia). Un assemblaggio completo del collegamento superconduttore con le due scatole di alimentazione è stato assemblato ed è in fase di test alla sezione SM18 del CERN, in preparazione per la sua installazione nella stringa tripletta interna nel 2024 (vedere la prima immagine “Alimentazione superconduttiva”).

 

La stringa di test IT

La stringa "inner-triplet" (IT) – che replica l’intero magnete, l’alimentazione e la protezione a sinistra del CMS dai magneti tripletti fino al magnete dipolo di separazione D1 – è la prossima pietra miliare del progetto HL-LHC.

 

Schema logico della stringa IT di test completa. Gli elementi chiave che costituiscono le nuove regioni di inserimento per l'esperimento LHC ad alta luminosità, che mostrano i gruppi di quadrupolo (Q) e dipolo (D), il feedbox dei collegamenti superconduttori (DFHX e DFH), la linea di distribuzione criogenica (SQXL) e apparecchiature ausiliarie.

 

L'obiettivo della stringa IT è convalidare le procedure e gli strumenti di assemblaggio e connessione necessari per la messa in opera della struttura nell'HL-LHC. Serve anche a valutare il comportamento collettivo della catena magnetica superconduttiva in condizioni il più vicino possibile a quelle del loro successivo funzionamento nell'HL-LHC, e come opportunità di formazione per i teams delle apparecchiature per il loro successivo lavoro nel tunnel dell'LHC. Come detto, la stringa IT comprende tutti i sistemi necessari per il funzionamento alle condizioni nominali, come il vuoto (seppur senza schermi a fascio magnetico), la criogenia, i sistemi di alimentazione e protezione. L'intera catena IT – lunga circa 90 m – trova posto sul retro della sala test SM18, dove è disponibile la necessaria infrastruttura per l'elio liquido.

Le nuove gallerie sotterranee sono “imitate” da una struttura metallica situata sopra i magneti. La struttura ospita i convertitori di potenza e il sistema di protezione dal quench (fascio che viene perso), il quadro di sezionamento elettrico e la scatola di alimentazione che unisce il collegamento superconduttore ai sistemi di alimentazione a conduzione normale. Il collegamento superconduttore si estende dalla struttura metallica sopra il gruppo magnete all'estremità D1 della stringa IT dove (dopo una discesa verticale che imita il passaggio attraverso i nuclei verticali sotterranei) è connesso a un prototipo della scatola di alimentazione dei magneti.

È in fase di completamento l'installazione dei sistemi di alimentazione normale e di protezione delle macchine della stringa IT (vedi immagine sotto). Insieme alle infrastrutture già completate dell'impianto, l'intero sistema di alimentazione a conduzione normale della stringa è entrato nella sua prima fase di messa in servizio nel Dicembre 2023, con l'esecuzione delle prove di cortocircuito. La linea di distribuzione criogenica per la stringa IT è stata testata con successo a basse temperature e sarà presto sottoposta a un secondo raffreddamento alla temperatura nominale, prima dell'installazione dei magneti e del sistema di alimentazione a freddo. Si prevede che l'installazione di test sarà completata nel corso del 2024 e il periodo operativo principale avrà luogo nel 2025.

 

Collimatori

Il controllo delle perdite del fascio causate da particelle ad alta energia che deviano dalla loro traiettoria ideale è essenziale per garantire la protezione e il funzionamento efficiente dei componenti dell'acceleratore, e in particolare degli elementi superconduttori come i magneti e le cavità. L’attuale sistema di collimazione LHC, che comprende già più di 100 collimatori individuali installati attorno all’anello, deve essere aggiornato per affrontare le sfide senza precedenti poste dai fasci più luminosi dell’HL-LHC. Dopo un primo aggiornamento dei sistemi di collimazione e schermatura dell'LHC implementati durante LS2, la sfida della produzione di nuovi collimatori per la regione di inserimento e del secondo lotto di collimatori a bassa impedenza viene ora lanciata all'industria.

La stringa IT in assemblaggio all’SM18 (a sinistra) e l’installazione dell’infrastruttura elettrica e di segnale (a destra)

L’ LS2, e il successivo stop tecnico di fine anno, hanno visto anche il completamento del nuovo schema di collimazione dei cristalli. Situato nell’ “IR7” (tra CMS e LHCb), questo schema comprende quattro goniometri con cristalli piegati – uno per fascio e piano – per incanalare le particelle alone su un assorbitore a valle (immagine qui sotto).

Dopo studi approfonditi con i fasci negli ultimi anni, la collimazione dei cristalli è stata utilizzata operativamente in un test fisico per la prima volta durante il test sugli ioni pesanti del 2023, dove è stato dimostrato che aumenta l'efficienza di pulizia di un fattore fino a cinque rispetto allo schema di collimazione standard.

Installazione dei nuovi collimatori dei cristalli nel tunnel LHC al Punto7

A seguito di questo notevole successo di implementazione e dei test completi di sviluppo della macchina, gli obiettivi prestazionali di HL-LHC sono stati definitivamente confermati sia per le operazioni con protoni che con ioni. Ciò ha consentito di escludere dal progetto HL-LHC la soluzione di base che utilizzava un collimatore standard inserito nella sezione IR7 (che avrebbe costretto alla sostituzione, per creare lo spazio necessario, di un dipolo LHC standard da 8,3 T con due dipoli corti Nb3Sn da 11 T).

 

Le cavità "granchio"

Una seconda pietra angolare del progetto HL-LHC sono le cavità “granchio” superconduttrici a radiofrequenza. Posizionati accanto al dipolo D2 e al magnete quadrupolare a sezione corrispondente Q4 nelle regioni di inserimento, queste cavità sono necessarie per compensare l'effetto dannoso dell'angolo di incrocio sulla luminosità applicando “un calcio di momento trasversale” (ovvero una semi-rotazione del pacchetto del fascio NdT) a ciascun fascio che entra nelle regioni di interazione di ATLAS e CMS.

Schema logico di funzionamento della crab cavity, che "raddrizza" i pacchetti per migliorare l'impatto degli stessi nel punto di collisione

Verranno installati due diversi tipi di cavità: il dipolo a radiofrequenza (RFD) e il dipolo a doppio quarto d'onda (DQW), che deviano i grappoli rispettivamente nei piani di incrocio orizzontale e verticale (vedi immagine sopra). La produzione in serie delle cavità RFD sta per iniziare presso Zanon, in Italia, sotto la guida di AUP, mentre la produzione della serie di cavità DQW è ben avviata presso RI in Germania, sotto la guida del CERN, dopo la validazione riuscita di due cavità nude in pre-serie.

Un crio-modulo DQW completamente assemblato è stato sottoposto a dei test del fascio di grande successo nel Super Sincrotrone Protonico (SPS) dal 2018, dimostrando la formazione di fasci di protoni e consentendo lo sviluppo e la validazione dei necessari sistemi RF di basso livello e di protezione delle macchine. Per l'RFD, alla fine del 2021, sono state consegnate alla collaborazione del Regno Unito due cavità, dopo la loro corretta qualificazione al CERN.

Cavità a granchio. L’inserimento di un controllo del fascio in una cavità granchio (a sinistra) e l’arrivo all’SM18 di un crio-modulo RFD (a destra)

Queste sono state assemblate in un primo crio-modulo RFD completo, che è stato restituito al CERN nell'autunno 2023 ed è attualmente sottoposto a test di validazione a 1,9 K, rivelando alcune non conformità da risolvere prima che sia pronto per l'installazione nell'SPS nel 2025 per i test con fasci. Dopo la validazione dei prototipi, è stata avviata anche la produzione in serie dei necessari accessori e degli accoppiatori di modalità di ordine superiore per entrambi i tipi di cavità al CERN e all'AUP. Prima della fabbricazione, il concetto della cavità “granchio” è stato sottoposto a un lungo periodo di ricerca e sviluppo con il supporto di LARP, JLAB, UK-STFC e KEK.

 

Programmi futuri.

Il 2023 e il 2024 sono gli ultimi due anni di grande spesa e di assegnazione dei contratti industriali per il progetto HL-LHC. Con il completamento dei contratti di ingegneria civile e l'assegnazione dei contratti per i nuovi compressori criogenici e per i sistemi di distribuzione, il progetto ha ora impegnato oltre il 75% del suo budget previsto. Una revisione dei costi e della pianificazione di HL-LHC tenutasi al CERN nel Novembre 2023, condotta da un gruppo internazionale di esperti di acceleratori di altri laboratori, si è congratulata con il progetto per i buoni progressi complessivi e ha concordato con la proiezione di essere pronti per l'installazione delle principali attrezzature durante LS3 a partire dal 2026.

Discuti questo articolo
Accedi per commentare
Discuti questo articolo nel forum (5 risposte).

LODA

Empty
  •  Stampa 
  • Email
Dettagli
[VENETO] sabayonino logo
Articoli
08 Gennaio 2023
Creato: 08 Gennaio 2023
Stella inattivaStella inattivaStella inattivaStella inattivaStella inattiva

LODA Logo

 

 
 
 
 
 
AMBITO: Informatica e I.A.
STATO: ATTIVO
ATTACH: https://boinc.loda-lang.org/loda/
 
 

FORUM-INFO : Thread di discussione

il progetto LODA (Lexicographical Order Descent Assembly) si occupa di matematica e di programmazione (program mining, ovvero la ricerca automatica di algoritmi e programmi nuovi)

LODA è un linguaggio assembly, un modello computazionale e uno strumento distribuito per i programmi di mining. Può essere usato per generare e cercare programmi che calcolano sequenze intere dall'On-Line Encyclopedia of Integer Sequences® (OEIS®). L'obiettivo del progetto è il reverse engineering di formule e algoritmi efficienti per un'ampia gamma di sequenze intere non banali. Il linguaggio

LODA significa Lessicographical Order Descent Assembly.

È un linguaggio basato su assembly per risolvere problemi di teoria dei numeri. Ha una sintassi semplice e un ricco insieme di operazioni aritmetiche. Ciò consente una ricerca automatizzata di nuovi programmi e algoritmi utilizzando un processo chiamato program mining. In poche parole,viene utilizzata potenza di calcolo distribuita, algoritmi di ricerca intelligenti e apprendimento automatico per trovare programmi e formule per le sequenze di interi dal database OEIS. Per avere un'idea della lingua, è possibile cercare tra i programmi disponibili o cercare utilizzando parole chiave. Una panoramica completa dei concetti del linguaggio e delle operazioni supportate è disponibile nella specifica del linguaggio.

LODA è un progetto comunitario. Il codice sorgente di LODA è ospitato nell'organizzazione loda-lang su GitHub.

 


 

LODA Logo

 

 
 
 
 
Informazioni tecniche
 
 
Stato del progetto: ATTIVO

Questo progetto non accetta attualmente nuovi account.

 

Requisiti minimi: nessuno
Gli sviluppatori non segnalano requisiti minimi da rispettare.

 

Screensaver: non disponibile

Assegnazione crediti: n/d

Supporto al progetto: supportato
Per unirsi al team BOINC.Italy consultare la scheda "Link utili" qui sotto cliccando sull'icona relativa al "JOIN" ico32_bi.

 

Problemi comuni: nessuno

Non si riscontrano problemi significativi segnalati.
 

 

LODA Logo

 

 

 

Link utili

Join al Team ico32_bi
Applicazioni ico32_applicazioni
Stato del server ico32_server

Statistiche interne

del progetto

ico32_stats

Classifica interna utenti

ico32_classutenti

Pagina dei

risultati

Pagina dei risultati



Statistiche BOINC.Stats

Statistica del Team sul

progetto

ico32_boincstats
Classifica dei team italiani ico32_statita
Statistiche del Team Team Stats
Classifica Utenti ico32_classutenti
Classifica mondiale del Team ico32_stats







Posizione del team nelle classifiche mondiali

 

Discuti questo articolo
Accedi per commentare

Altri articoli...

  1. Rosetta e VirtualBox
  2. iThena.Computational
  3. NanoHUB@Home
  4. Guida WSL

Sottocategorie

Progetti Conteggio articoli: 70

BOINC Conteggio articoli: 29

Guide Conteggio articoli: 17

BOINC.Italy Conteggio articoli: 13

Calcolo distribuito Conteggio articoli: 2

Scienza e ricerca Conteggio articoli: 38

Uncategorised Conteggio articoli: 187

Covid Conteggio articoli: 1

Pagina 1 di 71
  • Inizio
  • Indietro
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • Avanti
  • Fine

Ultime news dai progetti

  • Boinc per Android 7.18.1
  • CERN contro il Covid
  • Le novità in Rosetta
  • Folding@Home e le criptovalute
  • Nuovo account Twitter
  • Aggiornamento situazione CSG
  • Boinc Client 7.12
  • Nuovo applicativo Beta Sixtrack

Articoli

  • Docker e LHC
  • Traguardo delle 1.000 pubblicazioni scientifiche, che futuro per BOINC?
  • HL-LHC sta arrivando
  • Informatica e IA
  • LODA

Approfondimenti

  • Come funziona BOINC
  • Guida installazione BOINC
  • Utilizzo e settaggio del BOINC Manager
  • La firma personalizzata
  • CPID: cos'è e come funziona?

Iniziative

  • Utenti del giorno
  • Raccolta video

Blog

  • Pubblicazioni e....truffe
  • Teoria delle Stringhe - scienza o....
  • Mia mamma usa Windows
  • Foldit e AlphaFold
  • Addio Lugano bella
  • Supporta
  • Donazioni
  • Staff
  • Privacy
  • Contatti

Powered by BOINC

Il contenuto del portale BOINC.Italy è distribuito sotto Licenza Creative Commons
Copyleft © 2007 - 2025 BOINC.Italy