Puoi partecipare installando sul tuo computer un programma gratuito che scarica ed analizza dati provenienti da radio telescopi.
Un approccio, noto come radio SETI, usa i radio telecopi per captare segnali radio a banda stretta provenienti dallo spazio.
Questi segnali non vengono generati naturalmente, per questo una rivelazione darebbe una prova evidente di tecnologia extraterrestre.
I segnali del radio telescopio consistono primariamente di rumore (da sorgenti celesti e dall'elettronica dei ricevitori) e di segnali generati dall'uomo quali stazioni TV, radar e satelliti.
I moderni progetti radio SETI analizzano i dati digitalmente. Una maggior potenza di calcolo da la possibilità di coprire un intervallo di frequenze più grande, con maggiore sensitività. Radio SETI, inoltre, ha un insaziabile appetito per la potenza di calcolo.
I progetti precedenti di SETI hanno utilizzato dei supercomputer dedicati, ubicati presso il telescopio, per eseguire la maggior parte dell'analisi dei dati. Nel 1995, David Gedye propose di fare radio SETI utilizzando un supercomputer virtuale composto da un largo numero di computer connessi ad internet, ed organizzò il progetto SETI@home per esplorare questa idea. SETI@home è stato originariamente lanciato nel Maggio del 1999.
In termini scientifici, Astropulse è un'indagine del cielo che cerca radio impulsi transienti di durata pari al microsecondo. Questi impulsi potrebbero venire da fonti extraterrestri o da altre fonti.
Aapprofondiamo ognuno dei termini utilizzati:
Indagine del cielo: Il radiotelescopio che viene utilizzato (Osservatorio di Arecibo) analizza il cielo cercando segnali in ogni direzione. Questo differisce da un SETI direzionale in cui il radiotelescopio esamina attentamente solo alcune stelle per volta.
Microsecondo: un milionesimo di secondo. Astropulse è più sensibile di tutte le ricerche precedenti nello scoprire segnali ultrabrevi e più il segnale è breve, meglio Astropulse lo rileva (sino a un limite inferiore di 0,4 microsecondi). Potrebbe fare di meglio ma non viene spinto oltre.
Transiente: Un segnale è definito transiente se è corto, come un battito di tamburo. Il segnale transiente può essere un singolo impulso (un solo "battito di tamburo") o ripetuto (una serie di battiti).
Radio: I segnali sono fatti dello stesso tipo di radiazione elettromagnetica che captano le radio AM o FM, magari con una frequenza decisamente superiore, ma ancora considerati come radio-frequenze. Le radiazioni elettromagnetiche comprendono onde radio, microonde, luce infrarossa, luce visibile, luce ultravioletta, raggi-X e raggi gamma.
ET: Delle precedenti ricerche hanno cercato comunicazioni extraterrestri nella forma di segnali a banda stretta, analoghi alle nostre stazioni radio. Dato però che noi non sappiamo nulla su come gli ET comunichino, è probabile che questo approccio sia limitato.
Pulsar e RRAT: Il pulsar è una stella di neutroni rotante che può produrre segnali brevi con durata sino a 100 microsecondi, anche se tipicamente questo valore è molto più alto. Dal momento che Astropulse rileva impulsi da 0,4 microsecondi sarà capace di rivelare pulsar conosciuti, ma è improbabile che ne trovi di nuovi. La RRAT (Rotating RAdio Transient) è una variante del pulsar scoperta recentemente.
Buchi neri primordiali che esplodono: Martin Rees ha teorizzato che un buco nero, esplodendo per mezzo di una radiazione di Hawking , produce un segnale radio rilevabile.
Nuovi fenomeni: Forse il risultato più appagante per Astropulse è proprio quello di scoprire qualche fenomeno astrofisico ignoto.
Un impulso radio transiente da un microsecondo arriva a noi da una fonte distante nello spazio passando attraverso il mezzo interstellare (ISM, InterStellar Medium). L'ISM è un gas di atomi di idrogeno alcuni dei quali ionizzati, che hanno cioè perso un elettrone. Per ogni atomo di idrogeno ionizzato nell'ISM, c'è un elettrone libero che sta fluttuando da qualche parte e si definisce plasma una sostanza composta di particelle ionizzate che fluttuano liberamente.
Per poter analizzare il segnale originale si deve quindi sopprimere questa dispersione. Questa “dedispersione” è lo scopo primario dell'algoritmo di Astropulse. Non solo, la dedispersione permette di ridurre anche il rumore di fondo del segnale.
L'ammontare della dispersione dipende dall'ammontare del plasma di ISM tra la Terra e la fonte dell'impulso quindi una misura della dispersione (DM, Dispersion Measure) ci da' informazioni su quanto plasma ci sia tra i due punti. La DM è misurata in "parsec per centimetro cubo" ( pc cm-3). La densità attuale di elettroni liberi nell'ISM è approssimativamente 0,03 per centimetro cubo.
Astropulse analizza l'intera unità di lavoro (segnale radio) per diversi valori della DM (circa un migliaio), dedisperdendo il segnale per ognuno di questi valori. Il segnale ottenuto viene analizzato con il FFA (Fast Folding Algorithm) alla ricerca di impulsi ripetuti con periodo pari a 0,4 microsecondi - 0,8 - 1,6 - 3,2 - 6,4 - ...