BOINC.Italy BOINC.Italy BOINC.Italy La community italiana dedicata al calcolo distribuito
facebook feed twitter youtube
  • Utenti: 14'795
  • Gruppi: 56
  • Potenza: 376,47 TFLOPS
  • RAC: 75'293'489
  • Statistiche team
  • HomeHome
  • ArticoliArticoli
    • BOINC
    • Progetti
    • News dai progetti
    • BOINC.Italy
    • Calcolo distribuito
    • Scienza e ricerca
  • ProgettiProgetti
    • Progetti BOINC
      • Astronomia, Fisica e Chimica
        • Albert@home
        • Asteroids@home
        • Cosmology@home
        • Einstein@home
        • GAIA@Home
        • LHC
          • ATLAS@home
          • CMS
          • LHC@home
          • vLHC@home
          • Lhcb
        • MilkyWay@home
        • NanoHUB@Home
        • QuChemPedIA@Home
        • Universe@Home
      • Biologia e Medicina
        • Denis@home
        • DrugDiscovery@home
        • GPUGrid
        • RNA World
        • Rosetta@home
        • SiDock@Home
      • Climatologia e studio della Terra
        • Climateprediction.net
        • Quake-Catcher Network
        • Radioactive@home
      • Matematica
        • Amicable Numbers
        • Collatz Conjecture
        • Distribuited Hardware Evolution
        • Gerasim@home
        • iThena.Computational
        • iThena.Measurements
        • Moo! Wrapper
        • NFS@home
        • NumberFields@home
        • ODLK
        • ODLK1 (Latinsquares)
        • PrimeGrid
        • Private GFN Server
        • Rake Search
        • SRBase
        • Van Der Waerden Numbers
        • WEP-M+2
        • YAFU
      • Informatica e I.A.
        • LODA
      • Scienze cognitive
        • MindModeling@home
      • Multidisciplinari
        • BOINC@TACC
        • CSG@Home
          • DNA@home
          • SubsetSum@home
          • Wildlife@Home
        • Ibercivis
        • World Community Grid
        • yoyo@home
      • Altri
        • BOINC Alpha Test
        • Minecraft@Home
        • MLC@Home
        • WuProp@home
      • Progetti Italiani
        • Tn-Grid
      • Progetti chiusi
        • Leiden Classical
        • FightMalaria@home
        • The Lattice Project
        • Malaria Control
        • Superlink@Technion
        • Convector
        • Distributed DataMining
        • OProject@home
        • Sudoku@vtaiwan
        • FreeHAL@home
        • AlmereGrid BOINC GRID
        • BURP
        • Chess960@home
        • DistrRTgen
        • Pirates@home
        • Poem@home
        • POGS
        • Optima@home
        • SZTAKI Desktop Grid
        • Seti@home
        • Volpex@UH
        • Enigma@home
        • CAS@home
        • VGTU project@Home
        • SAT@home
        • PRIMABOINCA
        • XAnsons4cod
        • QMC@home
    • Folding@home
    • Progetti di distributed thinking
    • Applicazioni dei progetti
    • Foldit
    • Covid-19
    • Pubblicazioni scientifiche
    • Sorgenti Progetti
  • CommunityCommunity
    • Canale Facebook
    • Canale Twitter
    • Canale Telegram
    • Canale IRC su Freenode
    • Canale IRC su Libera Chat
    • Gruppi interni
    • Iniziative
    • Badge
    • Loghi e banner
    • Facciamoci conoscere
  • ForumForum
  • StatisticheStatistiche
    • Statistiche mondiali
    • Statistiche BOINC.Italy
    • Classifica combinata membri
    • Classifica combinata gruppi
    • BOINC.Italy Trophy
    • Stato dei server
    • Ricerca membri
    • Classifiche Challenges Esterni
  • SupportoSupporto
    • Ottieni aiuto online
    • Link utili
    • Domande frequenti (FAQ)
    • Guide
      • Guide (base)
        • Come funziona BOINC
        • Installazione di BOINC
        • Mini guida al BOINC Manager
        • Inserire Tag nel nick
      • Guide (avanzate)
        • Cross Project ID
        • La firma personalizzata BOINC
        • Multisessioni Boinc
        • Guida server Boinc
  • BlogBlog
    • Annunci
    • BOINC
    • BOINC.Italy
    • Calcolo distribuito
    • Pensieri distribuiti
    • Progetti
  • CercaCerca
 

Uncategorised

RakeSearch

Empty
  •  Stampa 
  • Email
Dettagli
boboviz logo
Articoli
18 Settembre 2018
Creato: 18 Settembre 2018

Valutazione attuale: 4 / 5

Stella attivaStella attivaStella attivaStella attivaStella inattiva

Rake Search

 

AMBITO: Matematica
STATO:  ATTIVO 
ATTACH: http://rake.boincfast.ru/rakesearch/
 
 
 

L'enorme dimensione dello spazio dei quadrati latini diagonali rende impossibile enumerare tutti i suoi oggetti direttamente in tempi ragionevoli. Quindi, per scoprire la struttura di questo spazio, sono necessari metodi di ricerca sofisticati. Nel progetto RakeSearch, implementiamo un'applicazione che raccoglie coppie separate di DLS (Diagonal Latin Square) mutualmente ortogonali, che consente di ricostruire grafici completi della loro ortogonalità.

Le coppie di quadrati trovati sono pubblicate qui.

I grafici scoperti dei quadrati latini ortogonali diagonali sono pubblicati qui.

Leggi tutto: RakeSearch
Discuti questo articolo
Accedi per commentare

Distribuited Hardware Evolution

Empty
  •  Stampa 
  • Email
Dettagli
boboviz logo
Articoli
18 Settembre 2018
Creato: 12 Settembre 2018

Valutazione attuale: 5 / 5

Stella attivaStella attivaStella attivaStella attivaStella attiva

 

Distributed Hardware Evolution Project

AMBITO: Elettronica
STATO: CHIUSO
ATTACH: https://

 

 

DHEP consente di ospitare un'isola che esegue un algoritmo genetico in un ambiente coevolutivo al fine di sintetizzare l'elettronica futura super-affidabile come quelle utilizzate nei veicoli autonomi, nelle centrali elettriche, nelle apparecchiature mediche, nell'aerospaziale. Questi sono di importanza sempre più importante in quanto sempre più vite umane si affidano a un hardware ben funzionante.
L'osservazione delle dinamiche della popolazione ci aiuterà anche a capire l'evoluzione, non solo a sfruttarla per raggiungere progetti "migliori di quelli umani", ma anche a capire come i tassi di migrazione, la diversità genetica e i meccanismi interni della ricombinazione genetica siano intervenuto di concerto per raggiungere la biodiversità e la meraviglia degli organismi viventi odierni.
Il progetto simula un'isola con una popolazione di circuiti che lottano per la sopravvivenza in un mondo online ostile. Durante il tempo di inattività dei PC, gli individui di questa popolazione si evolveranno attraverso l'evoluzione artificiale in un processo di sopravvivenza del più mite nei circuiti con Concurrent Error Detection (CED) e competeranno con quelli ospitati su altri PC migrando verso e da essi. Questi circuiti non saranno vincolati da regole progettuali convenzionali poiché l'evoluzione trova soluzioni efficienti senza preoccuparsi di quanto siano complessi da comprendere, proprio come ha fatto con il nostro corpo e il nostro cervello. Puoi unirti a questo cluster di calcolo in un minuto, scaricando il client boinc ed unendoti al progetto. Controlla come la tua popolazione sta facendo meglio rispetto a quelle degli altri e dai un nome alle migliori creazioni se entrano nella hall of fame “meglio dell’umano.
L'hardware di autodiagnostica è in grado di rilevare le deviazioni dal suo comportamento normale a causa di guasti: l’autodiagnostica è importante specialmente in sistemi mission-critical come strumentazione medica, controlli del trasporto e in quegli ambienti rischiosi come le missioni spaziali o le centrali nucleari.  L'autotest integrato (BIST) è ampiamente utilizzato, ma in genere richiede più del 100% di sovraccarico dell’area oppure dei test off-line. Tuttavia nei sistemi critici di missione i test off-line non sono adatti perché dobbiamo diagnosticare immediatamente (real time) il fallimento. La soluzione on-line standard è un sistema di votazione con due copie del modulo che deve essere diagnosticato, che è in grado di rilevare immediatamente i guasti confrontando le uscite delle copie. Tuttavia, questa soluzione richiede una ridondanza del 100% per il modulo aggiuntivo, più una maggiore logica per l'elettore (che deve stabilire quale modulo è on-line ed è corretto). Negli ultimi 40 anni di ricerca riguardanti il CED, nata dal programma aerospaziale della NASA, la progettazione convenzionale non ha prodotto un miglioramento significativo del sistema di votazione così come non ne ha prodotto per una soluzione CED on-line. Voi potete aiutarci ad arrivare alla prossima generazione di circuiti auto-diagnostici.
Poiché un numero crescente di compiti mission critical sono automatizzati, i circuiti di autocontrollo sono di fondamentale importanza: come abbiamo visto ci sono applicativi medici (monitor cardiaci, pacemaker, ecc), di trasposto (hardware degli aerei, luci del traffico, l’ABS delle auto, ecc), spaziali (satelliti, sonde) e impianti industriali (centrali atomiche) e molti si aggiungeranno nel futuro, come le auto a guida autonoma, operazioni mediche svolte da remoto, ecc. In tutte queste aree sono a rischio vite umane o grandi perdite economiche. Unendoti a questo progetto, daresti un contributo prezioso ad una interessante ricerca e contribuirai a spingere in avanti i limiti della conoscenza umana. Non solo, ma i circuiti prodotti da questo progetto sono davvero migliori di quelli del design convenzionale, quindi porterebbero a controllori più sicuri in applicazioni mission critical attuali ed emergenti salvando, come detto, vite e denaro.


I Metodi evolutivi come gli algoritmi genetici (GA) o le strategie evolutive (ES) tentano di applicare l'evoluzione darwiniana ad altri campi di ricerca:
1. Codificare il problema come un genotipo binario.
2. Creare una popolazione con genotipi casuali.
3. Valutare tutti gli individui in una popolazione.
4. Selezionare il più adatto per la riproduzione.
5. Creare una nuova popolazione applicando il cross-over a quelli selezionati.
6. Appicare la mutazione di fondo a tutti gli individui della populazione.
7. Tornare al punto 3 e ripetere fino a trovare una soluzione ottimale.


Questo semplice algoritmo è stato applicato a una vasta gamma di problemi, dall'adattamento dei parametri nei modelli economici alla progettazione delle ali degli aeromobili. Uno degli esempi più eclatanti del potere di variazione e selezione cieca è il discriminatore di toni di Adrian Thompson: sfruttando la fisica raffinata di un chip riconfigurabile (FPGA), un design evoluto è stato in grado di distinguere due parole pronunciate utilizzando solamente 100 porte logiche: qualcosa di impensabile con un design convenzionale. Maggiori approfondimenti in New Scientist Cover Story. Vi sono altri esempi in cui i metodi evolutivi applicati all'hardware hanno prodotto circuiti paragonabili a quelli progettati da esperti e anche circuiti non convenzionali in cui le risorse sono utilizzate in modo estremamente efficiente.
L'hardware autodiagnostico che si evolve è stato inizialmente tentato dall'autore per alcuni circuiti giocattolo: un moltiplicatore a due bit e un sommatore un bit. Dopo centinaia di migliaia di generazioni, i circuiti si sono evoluti eseguendo una diagnosi completa utilizzando circa la metà del carico che la soluzione convenzionale avrebbe richiesto. Ad esempio, quando si utilizza la tecnologia a gate logico a due ingressi, è possibile implementare un moltiplicatore a due bit utilizzando 7 porte. Aggiungendo una copia ulteriore e altre 7 porte per confrontare 4 uscite, abbiamo un overhead di 14 gate per la soluzione CED del sistema di voto convenzionale
Dopo quattro milioni di generazioni (un tempo di elaborazione di un mese su un singolo PC) la GA ha trovato un circuito (diagram) con lo stesso comportamento utilizzando solo 9 porte extra. È difficile capire esattamente quali siano i principi operativi alla base del suo funzionamento, ma sembra che tenda a utilizzare più porte XOR che propagano sempre un po’ di capovolgimento in uno dei loro input, e sfruttano anche la diversità del design per confrontare più sezioni del circuito simultaneamente. Molti circuiti evoluti sono descritti e i loro diagrammi possono essere trovati in  published papers.
Ciò dimostra che l'evoluzione è in grado di raggiungere aree di spazio progettuale oltre lo scopo del design convenzionale, e anche che queste aree contengono soluzioni efficienti finora invisibili, in attesa di essere svelate. Quanti circuiti di questo tipo l'evoluzione potrebbe trovare, migliori di quelli di oggi? Crediamo che siano ovunque e intendiamo iniziare a cercarli utilizzando un cluster di isole basato sui PC dei volontari.

Perché l'autodiagnosi dell'hardware?

È molto difficile progettare un circuito che produca un comportamento affidabile quando vengono a galla dei difetti, motivo per cui i progettisti umani hanno scelto semplicemente di avere una copia extra dell'intero circuito come soluzione. Tuttavia questo è costoso in termini di potenza e area del silicio, il primo cruciale, ad esempio, nelle missioni spaziali e il secondo nella produzione di massa. I circuiti da dare al cluster per evolvere saranno di dimensioni industriali, come un decodificatore di Viterbi, che viene utilizzato all'interno di ogni telefono cellulare.


 

Link utili
Join al Team ico32_bi
Applicazioni ico32_applicazioni
Stato del server ico32_server

Statistiche interne

del progetto

ico32_stats

Classifica interna utenti

ico32_classutenti

Pagina dei

risultati

Pagina dei risultati
 
 
 
Statistiche BOINC.Stats
Statistica del Team sul progetto ico32_boincstats
Classifica dei team italiani ico32_statita
Statistiche del Team Team Stats

 

Posizione del team nelle classifiche modiali
Discuti questo articolo
Accedi per commentare

CMS

Empty
  •  Stampa 
  • Email
Dettagli
ReLeon logo
Articoli
13 Marzo 2017
Creato: 13 Marzo 2017

Valutazione attuale: 5 / 5

Stella attivaStella attivaStella attivaStella attivaStella attiva
 
 
AMBITO: Fisica
STATO:  ATTIVO
 
Il progetto CMS è alla ricerca di fenomeni imprevisti e completamente nuovi, utilizzando un enorme magnete solenoide per piegare i percorsi delle particelle da collisioni nel LHC.
Il Compact Muon Solenoid (CMS) è uno dei rivelatori “generici” al Large Hadron Collider (LHC): ha, infatti, un programma di fisica ampio che va dallo studio del modello standard (tra cui il bosone di Higgs) alla ricerca di dimensioni extra e particelle che potrebbero essere la materia oscura.
 
 
 
Anche se ha gli stessi obiettivi scientifici dell'esperimento ATLAS, utilizza diverse soluzioni tecniche e un design di progettazione del magnete diverso.
 

 

Il rivelatore CMS è costruito intorno a un enorme magnete solenoide avente la forma di una bobina cilindrica di cavo superconduttore in grado di generare un campo magnetico di 4 tesla, circa 100.000 volte il campo magnetico terrestre. Il campo viene confinato da un “giogo” di acciaio che costituisce la maggior parte del peso, stimato in 14.000 tonnellate. Una caratteristica insolita del rivelatore CMS è che invece di essere costruito in situ come gli altri rilevatori giganti degli esperimenti LHC, è stato costruito in 15 sezioni a livello del suolo, prima di essere calato in una caverna sotterranea vicino a Cessy, sul confine franco–svizzero, e rimontata. Il rivelatore completo è lungo 21 metri, largo 15 metri e alto 15 metri.
 

L'esperimento CMS è una delle più grandi collaborazioni scientifiche internazionali nella storia, che coinvolge 4300 i fisici delle particelle, ingegneri, tecnici, studenti e personale di supporto da 182 istituti in 42 paesi (febbraio 2014).



CMS@Home è attualmente in fase beta, ma sarà ufficializzata presto, quando il test sarà finito e la piattaforma stabilizzata. Quindi è possibile calcolare gli ultimi dati provenienti dal LHC, che ora è in esecuzione a 13 teraelectronvolts (TeV) - quasi il doppio dell'energia di collisione del LHC iniziale, tre anni or sono. Elaborando questi dati si segnerà l'inizio alla seconda fase di LHC, aprendo la strada a nuove frontiere nel campo della fisica.
 

Supporto al progetto: supportato
Per unirsi al team BOINC.Italy consultare la scheda "Link" qui a destra cliccando sull'icona relativa al "JOIN" ico32_bi.

 

Referente/i: ReLeon
Se sei interessato al progetto e vuoi dare una mano diventando referente, contatta i moderatori in privato o attraverso le pagine del forum.
 
Sito dell’esperimento: http://home.cern/about/experiments/cms

Sito Boinc: https://lhcathome.cern.ch/lhcathome/index.php
 
 
Discuti questo articolo
Accedi per commentare

Brochure e volantini

Empty
  •  Stampa 
  • Email
Dettagli
boboviz logo
Articoli
24 Agosto 2017
Creato: 24 Agosto 2017

Valutazione attuale: 5 / 5

Stella attivaStella attivaStella attivaStella attivaStella attiva

 

Cari amici,

in questa sezione è presente materiale "pubblicitario" per far conoscere la nostra attività e il nostro gruppo.

Scaricate, stampate e distribuite!!

 

P.S.

Se qualcuno avesse voglia/tempo/competenze per fare altri volantini e/o immagini e/o altro materiale pubblicitario, è il BENVENUTO!!!

 

Volantino 1

 

Reclutamento

 

Boinc Italy

 

Volantino 2 B/N

 

Volantino 2 Colori

Discuti questo articolo
Accedi per commentare

LHCb

Empty
  •  Stampa 
  • Email
Dettagli
ReLeon logo
Articoli
13 Marzo 2017
Creato: 13 Marzo 2017

Valutazione attuale: 5 / 5

Stella attivaStella attivaStella attivaStella attivaStella attiva
 
AMBITO: Fisica
STATO:  ATTIVO
 

Progetto Lchb. Al Large Hadron Collider del CERN, fasci di protoni vengono accelerati vicino alla velocità della luce e scontrati tra di loro, ricreando le condizioni che esistevano quando l'Universo aveva un centesimo di miliardesimo di secondo di vita.

Il rilevatore LCHb è uno dei sette rivelatori maggiori presenti nell'accelleratore di particelle.

 


 

Leggi tutto: LHCb
Discuti questo articolo
Accedi per commentare

Altri articoli...

  1. Wildlife@Home
  2. Test client Poem per gpu Intel
  3. BOINC.Italy Linux Distro
  4. Cookie Law

Sottocategorie

Covid Conteggio articoli: 1

Pagina 5 di 37
  • Inizio
  • Indietro
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • Avanti
  • Fine

Ultime news dai progetti

  • Boinc per Android 7.18.1
  • CERN contro il Covid
  • Le novità in Rosetta
  • Folding@Home e le criptovalute
  • Nuovo account Twitter
  • Aggiornamento situazione CSG
  • Boinc Client 7.12
  • Nuovo applicativo Beta Sixtrack

Articoli

  • Docker e LHC
  • Traguardo delle 1.000 pubblicazioni scientifiche, che futuro per BOINC?
  • HL-LHC sta arrivando
  • Informatica e IA
  • LODA

Approfondimenti

  • Come funziona BOINC
  • Guida installazione BOINC
  • Utilizzo e settaggio del BOINC Manager
  • La firma personalizzata
  • CPID: cos'è e come funziona?

Iniziative

  • Utenti del giorno
  • Raccolta video

Blog

  • Pubblicazioni e....truffe
  • Teoria delle Stringhe - scienza o....
  • Mia mamma usa Windows
  • Foldit e AlphaFold
  • Addio Lugano bella
  • Supporta
  • Donazioni
  • Staff
  • Privacy
  • Contatti

Powered by BOINC

Il contenuto del portale BOINC.Italy è distribuito sotto Licenza Creative Commons
Copyleft © 2007 - 2025 BOINC.Italy