ODLK1 (Latinsquares)
< todo >
< todo >
< todo >
Nel nostro progetto stiamo cercando i ligandi: piccole molecole che possono legarsi con successo con bersagli proteici e modulare uno specifico processo che è cruciale per la biochimica dei virus. Il ligando ideale, basato sul docking molecolare, dovrebbe essere complementare per forma e proprietà al sito di legame della biomolecola bersaglio. Tuttavia, la complementarità di piccole molecole è solo uno dei prerequisiti per l'uso di una molecola come farmaco. Insieme abbiamo sviluppato un software, che può essere facilmente installato sul vostro computer per aiutarci a trovare una cura contro il nemico invisibile di oggi
La ricerca della molecola giusta è come cercare un piccolo ago in un enorme pagliaio: è un problema la cui risoluzione è molto difficile a causa del numero di possibili strutture molecolari. La quantità di tutte le possibili strutture molecolari è anche chiamata “universo chimico”; la dimensione di questo spazio astratto può essere stimata da 10 elevato alla 80. Ci sono molte galassie in questo universo, e una di loro è una galassia con le molecole (potenzialmente) farmacologicamente attive. Il metodo di ricerca si chiama screening virtuale. In generale, più grande è la parte studiata dell'universo chimico, più alta è la probabilità di trovare una cura potenziale contro il coronavirus.
Informazioni generali
Il "COVID.SI" – è un progetto che consente al pubblico di partecipare alla lotta contro il coronavirus condividendo le proprie conoscenze e le risorse del computer. Il progetto mira a studiare librerie di composti molecolari e aiutare a trovare una cura per il coronavirus utilizzando screening virtuali ad alta velocità.
Il protocollo di screening virtuale basato sulla struttura, è come cercare una chiave che sblocca un lucchetto in una piscina olimpionica piena di chiavi di tutte le forme e dimensioni, senza alcuna garanzia che la chiave giusta sia nella piscina.
Aspetto serratura e chiave
L'azione specifica di un enzima con un singolo substrato può essere spiegata utilizzando un'analogia Serratura-e-Chiave postulata per la prima volta nel 1894 da Emil Fischer. In questa analogia, la serratura è l'enzima e la chiave è il substrato. Solo la chiave di dimensioni corrette (substrato) si inserisce nel foro della chiave (sito attivo) della serratura (enzima).
Conoscere l'interazione tra un ligando e il suo ospite è fondamentale per comprendere la risposta biologica del ligando. La progettazione di farmaci prevede la progettazione di molecole complementari per forma e carica al target biomolecolare con cui interagiscono e quindi ci si legheranno.
Questo progetto non accetta attualmente nuovi account.
Assegnazione crediti: n/d
Problemi comuni: nessuno vedi elenco
Join al Team | ![]() |
Applicazioni | ![]() |
Stato del server | ![]() |
Statistiche interne del progetto |
![]() |
Classifica interna utenti |
![]() |
Pagina dei risultati |
![]() |
< todo >
XANSONS for COD è un progetto di ricerca volto a creare un database ad accesso aperto di modelli simulati di diffrazione di raggi X e polvere di neutroni per la fase nanocristallina dei materiali presentati nel Database aperto di cristallo (COD) .
I calcoli per questo progetto sono stati completati. Il database dei modelli simulati di diffrazione della polvere è disponibile all'indirizzo http://database.xansons4cod.com .
Questo progetto utilizza il software open source originale (licenza GPLv3) XaNSoNS (Scattering di raggi X e neutroni su strutture nanoscale) per simulare i modelli di diffrazione su CPU e GPU.
XANSONS per COD è un progetto BOINC gestito privatamente. È stato supportato dalla Fondazione russa per la ricerca di base nel 2015-2017 (progetto RFBR n. 15-07-07901-a).
La tecnica convenzionale utilizzata per recuperare le proprietà strutturali dei campioni cristallini mediante il loro modello di diffrazione della polvere è il metodo di raffinamento di Rietveld . In questo metodo, il modello teorico di diffrazione della polvere viene perfezionato fino a quando non si adatta a quello sperimentale. Il calcolo degli angoli e delle intensità delle cime di Braggpuò essere fatto quasi istantaneamente nell'approssimazione della dimensione infinita del cristallite. Per regolare la dimensione finita dei cristalliti nei campioni o la risoluzione finita del dispositivo di misurazione, questi picchi vengono ampliati artificialmente con la funzione di ampliamento (di solito gaussiana). Questo allargamento artificiale funziona benissimo fino a quando la dimensione del cristallite nel campione è inferiore a poche decine di nanometri. Per i cristalliti così piccoli, è molto difficile ottenere la giusta funzione di ampliamento che funziona bene per tutti i picchi di Bragg. Fortunatamente, per i cristalliti così piccoli, non è un problema calcolare i modelli di diffrazione della polvere usando l' equazione di Debye (con l' approssimazione dell'istogramma della distanza , come quella proposta da Marcin Wojdyr e implementata nel suo Codice Debyer ). Questo progetto ha lo scopo di calcolare i modelli di diffrazione di raggi X e polvere di neutroni per i nanocristalliti con dimensioni variabili da 6 nm a 30 nm per la maggior parte delle voci del database aperto di cristallografia . Vengono considerati i due diversi tipi di materiali: (a) nanoparticelle cristalline sferiche isolate di una determinata dimensione (diametro), (b) materiale cristallino con ordine a lungo raggio rotto su distanze maggiori di un determinato valore. Il database ottenuto può semplificare la diagnostica dei campioni nanocristallini e integrare il metodo di corrispondenza della ricerca di profilo completo nell'analisi delle dimensioni dei cristallini dei campioni nanocristallini.
Oltre a quanto sopra, il calcolo del modello di diffrazione della polvere usando l'equazione di Debye consente di tenere conto dei difetti del reticolo quali posti vacanti nel sito, sostituzioni di atomi e spostamenti. Pertanto, se il CIF (Crystallography Information File) per la struttura fornita fornisce i numeri di occupazione del sito e i parametri di spostamento atomico, l'applicazione li utilizzerà per calcolare il modello di diffrazione.
Questo progetto non accetta attualmente nuovi account.
Join al Team | ![]() |
Applicazioni | ![]() |
Stato del server | ![]() |
Statistiche interne del progetto |
![]() |
Classifica interna utenti |
![]() |
Pagina dei risultati |
![]() |
Statistica del Team sul progetto |
![]() |
Classifica dei team italiani | ![]() |
Statistiche del Team | ![]() |
Classifica Utenti | ![]() |
Classifica mondiale del Team | ![]() |